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Abstract 

Reducing noble metal dependence in oxygen evolution reaction (OER) catalysts is essential for 

achieving sustainable and scalable green hydrogen production. Bimetallic oxides, with their 

potential for high catalytic performance and reduced noble metal content, represent promising 

alternatives to traditional IrO2-based OER catalysts. However, optimizing these materials 

remains challenging due to the complex interplay of elemental selection, composition, and 

chemical ordering. In this study, we integrate density functional theory (DFT) calculations with 

Bayesian learning to accelerate the discovery of high-performance, low-Ir bimetallic oxides, 

identifying surface Ir-doped TiO2 as an optimal catalyst. Guided by theoretically optimized 

surface compositions and oxygen vacancies, we synthesized atomically dispersed Ir on TiO2, 

achieving a 23-fold increase in Ir mass-specific activity and a 115 mV reduction in overpotential 

compared to commercial IrO2. This work exemplifies a sustainable, data-driven pathway for 

electrocatalyst design that minimizes noble metal usage while maximizing efficiency, 

advancing scalable solutions in renewable energy and hydrogen production. 
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Introduction 

Green hydrogen produced from renewable energy sources from is a promising energy carrier 

that can address global energy security, mitigate climate change, and reduce environmental 

pollution (1, 2). Electrochemical water splitting, particularly proton exchange membrane water 

electrolysis (PEMWE), offers high current density and rapid responsiveness, making it suitable 

for coupling with intermittent renewable energy sources such as wind and solar (3). A key 

bottleneck in water electrolysis is the oxygen evolution reaction (OER) at the anode, which 

involves complex multi-electron transfer steps and requires efficient and stable electrocatalysts. 

Currently, Ir-based oxides, particularly IrO2, are the most effective catalysts for OER in acidic 

environments due to their optimal balance of activity and stability. Yet, the scarcity and high 

cost of iridium limit the scalability of these catalysts, posing a major challenge for the 

commercialization of PEMWE, making it crucial to reduce noble metal content for cost-

effective hydrogen production.  

Strategies such as catalyst support, doping, and defect engineering have been explored to 

reduce iridium usage (4). Loading active noble metal species onto a supporting substrate or 

incorporation of non-noble metals alongside iridium oxides offers effective ways to reduce the 

consumption of precious metals (5). Intriguingly, it’s has also been discovered that the inert 

non-noble metal oxides, such as Ti and Ce, can be activated by noble element, enabling them 

to serve as active sites and participate in OER process (6-8). Additionally, their tunable 

structures enable further enhancements in catalytic performance and conductivity through 

chemical ordering and defect engineering (9, 10). These structural flexibility enables bimetallic 

oxides to reduce noble metal content while enhancing catalytic activity through synergistic 

effects between guest and host elements (11). However, despite these advantages, optimizing 

bimetallic oxides remains challenging due to the complex interplay between elemental 

composition, chemical ordering, and structural defects, which collectively influence catalytic 

activity and stability. Experimental trial-and-error and high-throughput computations alone are 

often insufficient for efficiently navigating the vast configuration space. 

Bayesian optimization combined with machine learning surrogate model offers a powerful 

approach for efficiently identifying high-performance candidate materials from a vast 

configuration space (12, 13). In this study, we leverage an effective data-driven approach that 

combines density functional theory (DFT) with Bayesian optimization to efficiently explore 

and optimize bimetallic oxide catalysts for OER. By calculating the theoretical overpotential 

for each element in 66 different binary oxides, we identified Ir-doped TiO2 as a highly promising 

combination due to its potential for dual active sites. Using a Gaussian process-based Bayesian 
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optimization, we fine-tuned the Ir surface composition, chemical ordering and oxygen 

vacancies, finding that an Ir surface ratio of around 12.5% could achieve more than 40-fold 

increase in calculated Ir mass-specific activity compared to rutile IrO2. This enhancement is 

attributed to the introduction of Ir and oxygen vacancies, which enhance Ti site activity while 

maintaining Ir site performance. Guided by these theoretical insights, we synthesized 

atomically dispersed Ir on TiO2 with optimized oxygen vacancies, achieving a 23 times 

enhancement in Ir mass-specific activity and lowered the overpotential by 115 mV relative to 

commercial IrO2. This work exemplifies a sustainable approach to catalyst discovery, reducing 

noble metal content and advancing the development of scalable, high-performance 

electrocatalysts for green hydrogen production. 

Results and Discussion 
Initial Screening  

The search for binary oxide began with the identification of suitable alloying elements 

(Figure 1A). Considering rutile-type IrO2 oxide as the state-of-the-art commercial OER 

electrocatalyst, the thermodynamically stable (110) surface model for rutile was utilized as the 

support substrate. Although some non-rutile-type oxides loaded with noble metals have 

achieved excellent activity, such as the work by Li et al. on Ir loaded onto 𝛾-MnO2 (14), we 

selected the classical rutile-type oxide support in this work to verify the effectiveness of 

Bayesian learning. The doping structures were constructed by replacing a host atom in 

coordinately unsaturated site (CUS) with a guest atom, as depicted in Figure S1. Six different 

rutile oxide supports (IrO2, MoO2, TiO2, MnO2, PdO2, and SnO2) were selected and doped with 

eleven potential guest elements (Au, Ir, Mn, Mo, Nb, Pt, Re, Ru, Sn, Ti, V). The selected oxide 

supports all adopt the rutile structure, including IrO2 and five structurally compatible oxides 

(PdO2, RuO2, TiO2, SnO2, MoO2) to ensure consistent comparison. Dopants were chosen based 

on their presence in the selected oxides (Ir, Pd, Ru, Ti, Sn, Mo) and extended to V, Re, Pt, Nb, 

Mn, and Au to cover a broader range of chemical properties. Systems with excessive structural 

distortion upon doping were excluded to ensure reliable screening results. To evaluate OER 

activity, the theoretical overpotential for doped atoms and their neighboring host atoms were 

calculated by computational hydrogen electrode method (15, 16).  

Figure 1B illustrates OER activity of 66 kinds of binary oxides. As expected, Ir sites in IrO2 

exhibit outstanding activity. It is well known that RuO2 exhibits higher OER activity than IrO2, 

but its activity calculated by DFT is lower than IrO2 in Figure 1B. This underestimation has also 

been widely reported in previous studies and is generally attributed to systematic errors inherent 
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in DFT, or to the possibility that RuO2 follows a different reaction pathway or involves 

alternative active sites (17, 18). For oxides such as RuO2, PdO2, MnO2, and IrO2, doping has a 

relatively minor effect on the activity of the host elements. In contrast, the activity of Sn and Ti 

sites in SnO2 and TiO2, respectively, is significantly influenced by the choice of doped elements. 

Notably, substantial enhancements in OER activity are observed at the Ti site when noble metals 

like Ir and Ru are doped into TiO2. Considering both the activity of guest and host element sites, 

as well as the cost-effectiveness of the TiO2 support, we selected Ir-doped TiO2 as the optimal 

binary oxide combination. Previous work by Nørskov and co-workers has demonstrated the 

potential of Ir-doped TiO2 as an effective OER catalyst (19). Moreover, several experimental 

studies have reported Ir-supported titanium oxides, lending further credibility to our screening 

approach (20, 21). Building on our screening results and the foundation laid by previous studies 

focused on compositional aspects, this work further deepens the understanding of IrTi mixed 

oxides by systematically tuning both the Ir content and the concentration of oxygen vacancies. 

Figures 1C and 1D present the DFT-calculated OER free energy profiles for Ti and Ir sites in 

Ir-TiO2 with respect to pure TiO2. Pure TiO2 shows poor OER activity due to its weak adsorption 

affinity for oxygenated intermediates. Upon doping with Ir, the adsorption strength at the Ti site 

significantly improves, reducing the free energy change for the potential-determining step 

(PDS) , i.e. the oxidation of OH* to O*, from 2.82 eV in pure TiO2 to 1.76 eV in Ir-TiO2. For 

the Ir site, the free energy change of the PDS in Ir-TiO2 (1.67 eV) is comparable to that of IrO2 

(1.73 eV). Consequently, both Ti and Ir sites in IrTiO2 demonstrate high OER activity, 

benefiting from the synergistic effects of Ir doping. 

Bayesian Optimization of Surface Composition 

Bayesian optimization was employed to identify the optimal surface composition and 

chemical ordering for Ir-TiO2. A machine learning model capable of predicting activity across 

different Ir surface ratios and chemical arrangements was developed. Information about the 

environment of the adsorption site, such as atomic count, coordination numer, and other related 

features, was extracted as inputs for the machine learning model (Figure S2, Figure S3). The 

difference in adsorption free energies between oxygen and hydroxyl, ΔGO - ΔGOH, was 

calculated and used as the output for the machine learning model. Through Nørskov’s 

microkinetic model, the reaction site’s current density was inferred from ΔGO - ΔGOH (22). The 

overall avtivity was considered as the sum of the current densities of all CUS in the structure. 

Gaussian process regression (GPR) was selected for its ability to quantify uncertainty, allowing 

Bayesian optimization to balance exploration (high-uncertainty regions) and exploitation (high-

activity regions) using the expected improvement (EI) acquisition function. 
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Eight iterations of Bayesian optimization were conducted to identify the most active Ir-TiO2 

configuration (Figures S4-S5). This process generated a dataset of 139 DFT-calculated ΔGO - 

ΔGOH values, enabling a machine learning model with a prediction accuracy of 0.06 eV for ΔGO 

- ΔGOH (Figure 2A). As shown in Figure 2A, most ΔGO - ΔGOH values are concentrated in the 

high-activity region (optimal ΔGO - ΔGOH ≈ 1.53 eV), confirming that Bayesian optimization 

effectively prioritizes high-activity regions and avoids the sampling biases typical of random 

sampling. Separate surrogate models were trained for predicting the adsorption free energy 

difference ΔGO - ΔGOH and the thermodynamic stability of the structures. Bayesian 

optimization was also used to identify the most stable Ir-TiO2 configuration (Figure S6), 

resulting in a model with a prediction accuracy of 0.004 eV/atom for formation energy (Figure 

2B).  

Figure 2C and Figure S7 presents the machine-learning-predicted relative mass activity and 

relative current density of the most active and most thermodynamic stable structures as a 

function of Ir loading and Ir surface ratio. The mass activity in this work refers to the Ir mass-

specific activity, defined as the catalytic current normalized by the mass of Ir atoms in the 

system, thereby reflecting the intrinsic utilization efficiency of the precious metal. The relative 

mass activity and relative current density are both referenced to that of a 4 layer 2×4 rutile IrO2 

model. Even at low doping levels, the addition of Ir significantly boosts mass activity by 

activating nearby Ti sites, with optimal activity achieved when nearly all CUS Ti sites are 

engaged. Beyond this optimal Ir ratio, however, further increases in Ir content provide marginal 

activity enhancement, leading instead to a decay in mass activity due to the excessive Ir loading. 

The most active configuration of IrTiO2 at Ir surface ratio of 18% (Figure 2D) displays an 

ordered arrangement of Ir and Ti atoms, where all Ir atoms are isolated by Ti atoms. This ordered 

configuration effectively maximizes synergistic interactions between Ir and Ti, resulting in 

enhanced OER activity due to optimized electronic effects that promote oxygen adsorption and 

reaction kinetics at Ti sites (Figure S8). 

Interestly, the stability Baysian optimization revels a different trend. Configurations with 

aggregated Ir atoms are thermodynamically more stable (Figure 2E, Figure S6). This trend may 

be attributed to the collective bonding preferences in different local environments: phase-

separated structures feature Ir–O–Ir and Ti–O–Ti linkages, which could be energetically more 

favorable than the mixed Ir–O–Ti motifs in ordered configurations. In these segregated 

configurations, fewer Ti sites neighbor Ir atoms, reducing the electron transfer and catalytic 

synergy necessary for optimal OER performance (Figure S9). As a result, these segregated 
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structures exhibit lower mass activity than the ordered configurations and require a higher Ir 

surface ratio to achieve optimal mass activity (~50%), as shown in Figure 2C.  

The divergence between the most active and most stable configurations outlines the upper 

and lower bounds of the activity trend under real conditions and highlights the trade-off between 

maximizing catalytic activity and achieving thermodynamic stability, underscoring the 

importance of atomic-level design in balancing these properties in Ir-TiO2 catalysts. 

Effects of oxygen vacancy on IrTiO2. 

Building on the balance between catalytic activity and thermodynamic stability, we explored 

strategies to enhance Ti site activation in segregated structures by introducing oxygen vacancies 

into IrTiO2. To achieve this, a machine learning model was developed to predict OER activity 

for IrTiO2-x, supported by an OER activity database generated by randomly removing oxygen 

atoms from existing IrTiO2 structures. Approximately 285 DFT-calculated ΔGO - ΔGOH values 

for IrTiO2-x were accumulated, with the ΔGO - ΔGOH distributions for Ti and Ir sites, both with 

and without oxygen vacancies, shown in Figures 3A and 3B. The introduction of Ir broadens 

the ΔGO - ΔGOH distribution for Ti sites, spanning the range between pure TiO2 and pure IrO2, 

while the addition of oxygen vacancies further shifts the ΔGO - ΔGOH values of Ti toward those 

of IrO2. In contrast, the ΔGO - ΔGOH distribution for Ir sites remains concentrated within a 

narrow range, indicating that Ir loading and oxygen vacancies have a relatively minor impact 

on Ir sites. 

Using this dataset, we developed a machine learning model for IrTiO2-x with acceptable 

prediction accuracy of 0.10 eV for ΔGO - ΔGOH (Figure S10). The model was subsequently 

employed to optimize oxygen vacancy configurations in IrTiO2 (Figure S11). Figure 3C shows 

the relative mass activity of the most stable IrTiO2 structures, as well as the maximum activity 

achieved after introducing a single oxygen vacancy. The results reveal that with 12.5% Ir 

surface doping and the incorporation of oxygen vacancies, a mass activity exceeding 40 times 

that of IrO2 can be achieved. While the surrogate model may not resolve this enhancement with 

quantitative precision, it effectively captures the qualitative trends and identifies promising 

configurations for further validation (23, 24). To address stability concerns, we additionally 

calculated the oxygen vacancy formation energies and identified the most stable IrTiO2-ₓ 

structure (Figure S12), whose predicted mass activity is shown in Figure S13. Despite slightly 

lower activity compared to the most active IrTiO2-x variant, it still demonstrates a more than 40-

fold enhancement over IrO2, confirming the effectiveness of vacancy engineering in activating 

Ti sites while retaining structural stability. 
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To shed light on the activity enhancement mechanism of Ti site by Ir dopant and oxygen 

vacancy, we analyzed the electronic structure of TiO2, IrTiO2, IrTiO2-x and IrO2 through charge 

density difference and projected density of states (PDOS) calculations. As illustrated in Figure 

3D and Figure S14, Ir doping enhances the adsorption affinity of oxygen on Ti site through 

charge redistribution from Ir to Ti, while the introduction of oxygen vacancies further 

strengthens the charge transfer. The enhanced charge transfer is quantitatively demonstrated by 

the Bader charge calculations results, which show that the the charge transfer amounts of the 

oxygen atom adsorbed on Ti site to the catalyst suface in TiO2, IrTiO2, and IrTiO2-x are -0.61|e|, 

-0.67|e| and -0.69|e|, respectively, and the charge transfer amounts of the iridium atom 

neighboring to Ti site to the catalyst suface in IrTiO2, and IrTiO2-x are +1.80|e| and +1.63|e|. 

PDOS results reveal that Ir doping introduces new electronic states between the conduction 

band and valence band of Ti (Figure 3F). Our previous work has shown that Ir doping states 

raise the highest occupied states (HOS) of the system, which activates otherwise inert Ti sites 

by increasing energy gain of electrons transferred during O adsorption (25). Introducing oxygen 

vacancies further elevates the HOS, enhancing Ti site activation and improving the conductivity 

of IrTiO₂, which collectively boosts catalytic activity. 

Synthesis and characterization of IrTiO2-x. 

Theoretical predictions suggest that doping with a small amount of Ir and introducing oxygen 

vacancies can significantly enhance the OER catalytic activity of the IrTi bimetallic oxide 

material. Following the above theoretical prediction, atomically dispersed Ir on TiO2-x nanorods 

(IrTiO2-x) was synthesized by a simple and scalable impregnation-calcination method. Firstly, 

TiO2 nanorod array was grown on carbon cloth (Figure S15) by a hydrothermal method. And 

then the TiO2-x nanorods with oxygen vacancy was successfully obtained via the calcination of 

TiO2 nanorod array at 700 ℃ for 4 h in H2/Ar flowing gas, which is confirmed by the EPR 

signal assigned to oxygen vacancy (Figure S16) (26, 27). The X-ray diffraction (XRD) pattern 

of the TiO2-x nanorods displays a typical rutile structure (JCPD #21-1276) mixed with a small 

amount of anatase phase (JCPD #21-1272) (Figure S17) (28). The scanning electron 

microscopy (SEM) images show that TiO2-x nanorods have diameters ranging from 50 to 100 

nm and a length of around 2 μm (Figure S18). Subsequently, Ir atom was dopped on TiO2-x 

nanorods by impregnation and calcination process (see Methods for more details), the XRD 

pattern of IrTiO2-x is consistent with TiO2-x support (Figure S17), and no characteristic 

diffraction peak related to Ir can be detected, implying the high dispersion of Ir in the catalyst, 

and the element content of Ir in the catalyst was measured to be  14.2 μg·cm-2 by inductively 

coupled plasma optical emission spectroscopy (ICP-OES, Table S5). The morphology of TiO2-
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x nanorods keeps unchanged after the introduce of Ir (Figure S18). High-angle annular dark-

field scanning transmission electron microscopy (HAADF-STEM) images of IrTiO2-x present 

that the well-ordered lattice fringe (0.321 nm) corresponds to the (110) plane of rutile TiO2, and 

isolated bright dots (Ir atoms) are randomly scattered on the TiO2-x support (Figure 4A and 

Figure S19). While our thermodynamic modeling suggests that Ir atoms tend to aggregate in 

the most stable configurations, this appears to differ from the dispersed Ir distribution observed 

experimentally. This discrepancy may arise from the kinetic constraints during synthesis, which 

can lead to metastable states being trapped. EPR spectra of IrTiO2-x further suggests the 

prominent existence of oxygen vacancy after overgrowth of Ir (Figure 4B).  

The chemical state and local coordination environment of Ir species were investigated by X-

ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). Figure S20 

shows the XPS spectra of Ir 4f for IrTiO2-x and IrTiO2 catalyst. The binding energy peaks at 

62.25 eV and 65.14 eV belong to Ir 4f7/2 and Ir 4f5/2, respectively, indicating that the oxidation 

state of Ir is 4+ (29, 30). The X-ray absorption near-edge structure (XANES) spectroscopy of 

Ir L3-edge for IrTiO2-x together with Ir foil and  IrO2 as references are presented in Figure 4C. 

The white line intensity of Ir L3-edge represents the transition from occupied 2p electron to 

empty 5d orbital. A more empty Ir 5d orbital state in the catalyst corresponds to the higher 

intensity of the white line, implying the higher oxidation state of Ir (31). Obviously, the white 

line intensity of IrTiO2-x almost coincides with the commercial IrO2, demonstrating the valence 

state of Ir mainly exists in 4+. Moreover, the coordination configurations were analyzed by 

extended X-ray absorption fine structure (EXAFS). Figure 4D displays the Fourier transform 

EXAFS spectra of Ir species in the R-space. For IrTiO2-x, there is no obvious peak at 2.51 Å 

(for Ir–Ir scattering in metallic Ir), but the dominant peak around 1.63 Å ascribed to the Ir-O 

bond can be observed, indicating the atomic dispersion of the Ir species in the sample (Figure 

S21) (32, 33). 

Electrocatalytic OER performance.  

The electrocatalytic performance for OER of IrTiO2-x and TiO2 was investigated in 0.1 M 

HClO4 solution at room temperature (experimental details are provided in the Supporting 

Information). For comparison, the catalytic activities of TiO2, commercial IrO2, and 20% Ir/C 

were also tested under the same conditions. The linear sweep voltammetry (LSV) curves with 

iR compensation for these catalysts are shown in Figure 4E. Pure TiO2 exhibits negligible 

activity, whereas IrTiO2 achieves a lower overpotential (ƞ) of 330 mV to reach a current density 

of 10 mA·cm⁻². To enhance the OER activity further, oxygen vacancies were introduced into 

the catalyst, creating IrTiO2-x, which displays high OER activity with an overpotential of only 
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295 mV at 10 mA·cm⁻2 (Figure 4F), outperforming TiO2, commercial IrO2 (410 mV), and 20% 

Ir/C (382 mV). 

Additionally, mass activities were calculated to assess the cost-effectiveness of the atomically 

dispersed structure. Notably, the mass activity of IrTiO2-x reached 807 A·gIr-1 at 1.53 V (RHE)  

(Figure 4G, Figure S22), which is 9 times higher than that of commercial IrO2 (83 A·gIr-1) and 

23 times higher than 20% Ir/C (34 A·gIr-1). Electrochemically active surface areas (ECSA) were 

estimated by double-layer capacitance (Cdl) measurements from cyclic voltammetry (CV) with 

variable scan rates (Figure S23 and Table S6), showing that IrTiO2-x has a higher ECSA than 

IrTiO2. These results demonstrate the excellent OER activity of IrTiO2-x, which can be attributed 

to the maximized atom efficiency of Ir atoms and the synergistic effect of Ir doping and oxygen 

vacancies that activate inert Ti sites, validating the theoretical prediction. Furthermore, EPR 

spectra confirm that the oxygen vacancies in IrTiO2-x remain stable after the OER test (Figure 

S1924). Since the EPR spectra were not collected on the same sample before and after OER 

testing, they cannot conclusively quantify changes in vacancy concentration. Nevertheless, the 

presence of EPR signals after the OER indicates that oxygen vacancies are retained to a 

significant extent during the reaction, supporting their structural stability under operating 

conditions. 

In addition, the Tafel slope of IrTiO2-x (68 mV·dec⁻¹) is considerably lower than that of IrTiO2 

(79 mV·dec⁻¹), commercial IrO2 (113 mV·dec⁻¹), and 20% Ir/C (88 mV·dec⁻¹) (Figure 4H), 

indicating faster OER kinetics for IrTiO2-x. The lower charge transfer resistance (Rct) of IrTiO2-

x, obtained from electrochemical impedance spectroscopy (EIS) analysis, further demonstrates 

more efficient charge transfer at the IrTiO2-x catalyst-electrolyte interface, implying a faster 

reaction rate (Figure 4I and Table S7). Furthermore, the performance of IrTiO2-x in terms of 

mass activity and overpotential surpasses that of most reported Ir-based catalysts for acidic 

OER (Figure S25 and Table S8). Additionally, the chronopotentiometry measurement was 

carried out to evaluate the stability of the catalyst. As shown in Figure S26, the overpotential of 

IrTiO2-x was increased by 60 mV after a continuous operation of more than 10 h at 10 mA cm-

2. Compared with the commercial IrO2 and commercial Ir/C, the IrTiO2-x exhibit a relatively 

stability. 

The operando differential electrochemical mass spectrometry (DEMS) experiments with 
18O isotope labeling were performed to investigate OER mechanism of IrTiO2-x. The different 

molecular mass involving 32O2, 34O2 and 36O2 during the OER process were collected and 

analyzed. Firstly, the OER was conducted in 0.1 M HClO4 electrolyte that prepared using 18O-

labeled water. As presented in Figure S27a, the reaction predominantly yielded 36O2 as the main 
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product, with trace amounts of 34O2 detected. This minor 34O2 originated from 16O impurities 

derived from H216O in the 70% HClO4 electrolyte system or possibly from the lattice oxygen 

of the catalyst. Subsequently, the second OER test of the catalyst that used in the first step was 

conducted in 0.1 M HClO4 electrolyte that prepared using 16O-labeled water. As shown in 

Figure S27b, 32O2 was the dominant product, with no detectable 34O2 or 36O2 signals. This result 

conflicts with the lattice oxygen-mediated (LOM) mechanism, as the expected exchange of 18O 

with lattice oxygen in IrTiO2-x during the first OER step would have produced 34O2 or 36O2 

species (34). Thus, the DEMS experiments results demonstrated the conventional adsorbate 

evolution mechanism (AEM), which in agreement with the DFT results. As shown in the LSV 

curves in Figure S28, we further evaluated the OER catalytic activity of pristine TiO2 and 

oxygen-deficient TiO2-x. The results indicate that the introduction of oxygen vacancies leads to 

negligible changes in catalytic performance, suggesting that oxygen vacancies in TiO2 do not 

serve as active sites for the OER. These experimental results confirm that the introduction of 

oxygen vacancies does not alter the OER mechanism or the active site in for IrTiO2-x. 

Discussion 

In summary, we developed a Bayesian-learning-assisted strategy to design efficient, low-Ir 

OER catalysts by combining theory and experiment. The resulting Ir-TiO2-x electrocatalyst 

exhibited significantly improved activity and reduced noble metal usage. Guided by the theory 

prediction, the successful synthesis and experimental validation of atomically dispersed Ir on 

TiO2 nanorods with oxygen vacancies have shown a remarkable enhancement in OER activity. 

While there are still gaps between theoretical models and specific experimental conditions, they 

helped narrow the experimental design space by highlighting the importance of balancing Ir 

content and oxygen vacancy concentration for optimal performance. By leveraging advanced 

computational techniques and machine learning, this work demonstrates the potential of data-

driven catalyst design in advancing renewable energy technologies, aligning with global 

sustainability goals. The methodologies presented here are not only applicable to OER but could 

also be extended to other material system, such as suppots like 𝛾-MnO2 (14), and other catalytic 

reactions like oxygen reduction and carbon dioxide reduction, ultimately contributing to a more 

sustainable energy future. 

 

Materials and Methods 

DFT calculation.  
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All DFT calculations were performed using the Vienna ab initio simulation package (VASP, 

version 6.3.2) (35). The Perdew-Burke-Ernzerhof (PBE) functional was used to describe the 

exchange-correlation interactions (36). Projector-augmented wave (PAW) method was 

employed to treat the interaction between the core and valence electrons, the pseudopotentials 

used treat Ti (3p, 3d, 4s), Ir (5d, 6s), and O (2s, 2p) electrons as valence states. A plane wave 

basis set with a kinetic energy cutoff of 400 eV was used (37). The unit cells of rutile oxides in 

P42/mnm space group were download from Material Project database and reoptimized by DFT. 

For OER activity calculations for single atom doped oxide, a 2x1 (110) surface model for rutile 

oxide was constructed with 4-layer-thick slab with 48 atoms. For optimal ratio and 

configuration calculations for IrTiO2, a larger 4x2 (110) surface model with 4-layer-thick slab 

with 192 atoms was used. Based on the IrTiO2 model, 1 to 4 oxygen vacancies were randomly 

removed to model IrTiO2-x. Considering that oxygen vacancies on the surface of the bimetallic 

oxides tend be oxidized and refilled under working conditions, oxygen vacancies were 

generated in the interior of the slab model rather than on the surface. We also calculated the 

oxygen vacancy formation energies for both the surface and subsurface layers, and the results 

show that the formation energy is lower in the subsurface layer than on the surface. Furthermore, 

oxygen vacancies were not introduced directly at the nearest neighbors of reaction site to avoid 

creating an overly unsaturated coordination state, which could result in structural reformation 

during optimization and excessively strong adsorption energies. A vacuum layer of 7.5 Å was 

added above and below the slab to avoid the periodic interactions. For the slab models, the 

bottom two atomic layers were fixed during geometry optimization to mimic bulk-like behavior, 

while the top two layers were fully relaxed. The Monkhorst-Pack k-point mesh for bulk, 2×1 

slab and 4×2 slab optimization tasks were 10×10×10, 5×5×1 and 3×3×1, respectively (38). 

In accordance with Vegard's law, the lattice parameters for the IrTiO2 bimetallic oxide model 

was determined as the weighted average of the lattice parameters of pure TiO2 and pure IrO2, 

based on the stoichiometric ratio of Ti and Ir (39) . The optimization was stopped when the 

energy changes and forces drop below 5 × 10!"  eV and 0.03 eV/Å. DFT+U Hubbard U 

methods were employed to address the excessive delocalized of d electrons, Hubbard U values 

were set at 3.3V for Ti element, 3.75V for Mn element and 3.25V for V element. Other U values 

are adapted from reference (40). 

The adsorption energies of *O, *OH were calculated by the following Equations: 

∆E# = E#∗ − E∗ − (E%!# −	E%!) （1） 
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∆E#% = E#%∗ − E∗ − (E%!# − 	1/2E%!) （2） 

where the E∗, E#∗ and E#%∗ are DFT calculated energies for clean surface, surface with O and 

OH, respectively. The E%!#  and E%!  are energies of H2O (-6.76 eV) and H2 (-14.22 eV) 

respectively, which are calculated by DFT using a H2O and H2 molecule placed on a 

10Å×10Å×10Å cubic cell model. The free energy of each adsorbate can be obtained from the 

following equation: 

		∆G = ∆E + ∆ZPE − T∆S （3） 

Here the ∆E is the DFT calculated energy, ∆ZPE and T∆S are the zero point energy correction 

and entropy correction, respectively. In this work, the ∆ZPE − T∆S values from literature for 

*OH (0.35 eV), *O (0.05 eV) were used (15). The adsorbate evolution mechanism (AEM) 

consisting of four-step electron-coupled proton transfer steps was used. We also calculated the 

free energy profile of the LOM pathway on Ir-doped TiO2 (Figure S29). The results show that 

the free energy increase of the potential-determining step for LOM is significantly higher than 

that for AEM, confirming AEM as the more favorable reaction pathway. 

The adsorption energies of *O and *OH were computed, and adsorption energies of OOH were 

obtained using the linear relationship between ΔG##%  and ΔG#%(ΔG##% = ΔG#% + 3.2	eV	) 

(15). The reaction free energies of four OER elementary step can be obtained by:    

∆G& = ∆G#% (4) 

∆G' = ∆G# − ∆G#% (5) 

∆G( = ∆G##% − ∆G# (6) 

∆G) = 4.92 − ∆G##% (7) 

The overpotential is calculated by the following equation: 

				η = max(ΔG*) /e − 1.23V (8) 

Here max(ΔG*) is the maximum reaction free energy of four elementary steps. 

A microkinetic modeling correlating the ΔG# − ΔG#% with current density was applied to 

evaluate the OER activity of each reaction site at an applied potential of 1.53 V (41). The 

logarithm of the current density (log i) was approximated as a piecewise linear function as  

following: 

log i = D 8.06 × ∆G − 12.98, ∆G < 1.53eV
−8.74 × ∆G + 12.73, ∆G ≥ 1.53eV (9) 
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Where ∆G is the free energy difference of the reaction from *OH to *O. The activity of a given 

configuration was evaluated as the average current density over all its CUS sites. The theoretical 

relative mass activity was computed by dividing the mass activity of IrTiO2 by that of IrO2 

using a 4-layer slab model. The formation energy was used to reflect the thermodynamic 

stability, which is defined by the following equation: 

E+ = E(Ir,Ti&!,O') − [xE(IrO') + (1 − x)E(TiO')]      (10) 

Where E(*) is the DFT calculated energy of Ir,Ti&!,O' model, x is the stoichiometric surface 

ratio of Ir in Ir,Ti&!,O', E(TiO') and E(IrO') depict the DFT calculated energies when the 

surface ratio of Ir are 0 and 1, respectively.  

Feature Engineering 

To develop a machine learning model capable of predicting intermediate adsorption 

energies on oxide coordinately unsaturated site, we digitally encode the atomic neighboring 

environment of CUS as input for the machine learning model, as depicted in Figure S3. The 

metal atoms closest to the CUS site in the oxide were divided into four atomic layers. Starting 

from the nearest to the farthest layer from the CUS, there are 1, 2, 2, 4 and 2 atoms in each of 

the five layers, respectively. To enhance the fidelity of feature, the second neighboring layer is 

subdivided into its own second and fourth neighboring layers, and the fourth neighboring layer 

is also subdivided into its own second and fourth neighboring layers. Consequently, the 

neighboring environment of the adsorption site is subdivided into nine atomic layers. The 

number of Ti atoms, number of Ir atoms, mean coordination number of Ti atoms, mean 

coordination number of Ir atoms were used to quantify all nine atomic layers, which made up 

the 36-dimensional feature. When there are two Ir atoms and two Ti atoms in the fourth 

neighbor atomic shell of the CUS site, there are three different environments resulting from the 

atomic occupations. We included angles as part of the features to describe these environments. 

Additionally, we utilized the overall Ir doping ratio in alloy oxide as an additional dimensional 

feature. When introducing oxygen vacancies, the oxygen vacancies reduce the coordination 

number of metal atoms, which is subsequently reflected in the feature. Normalization was 

employed to eliminate bases caused by varying feature values across different dimensions. 

Principal Component Analysis (PCA) dimensionality reduction was utilized to delete redundant 

features. The DFT calculated ΔG# − ΔG#% values of CUS site were used as the output for the 

ML model.   
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Machine learning model capable of predicting stability for given doped IrTiO2 

configuration was also developed. The features for the model were extracted by counting the 

numbers of different coordination pairs in for 5-coordinated CUS 6-coordinated bridge site. 

The DFT calculated energy of IrTiO2 with the reference energies of pure TiO2 and IrO2 phases 

was used as the output target.  

Machine learning and Bayesian optimization 

We choose the Gaussian Process Regression (GPR) model for its capacity to estimate 

uncertainties. The radial-basis function (RBF) was used to determine the term in covariance 

matrix. The RBF function was defined as: 

𝑘(𝑥, 𝑥-) = 𝑎'exp(− ./!/"0
!

'1!
)                                             (11) 

Where 𝑥 and 𝑥- were two variables, 𝑎 and 𝑏 were scale factor and length factor, and these two 

factors were optimized in machine learning model training. The scikit-learn package was used 

for constructing GPR model (42). The predicted ΔG# − ΔG#% and corresponding uncertainty 

of each CUS site in IrTiO2 model were further translated to OER activity A and corresponding 

uncertainty 𝜎2. The hypothesis is put forward that the OER activity A of each site behaves as 

an independent random variable drawn from a population that follows a normal distribution 

𝑁(A, 𝜎3'). Then the mean activity AX of all 8 CUS site in IrTiO2 model can be regarded as a 

random variable satisfying Gaussian distribution in the following form: 

							AX = 𝑁(∑ A*4
*5& , 1/8∑ σ3#

'4
*5& )                                          (12) 

The expected improvement (EI) was used as the acquisition function to determine the 

selection of the next IrTiO2 configuration. EI is defined as followed: 

EI(x) = [𝑓(𝑥) − 𝑓(𝑥6) − 𝜁]Φ(𝑍) + 𝜎(𝑥)𝜙(𝑍)                    (13) 

Where 𝑍 = [𝑓(𝑥) − 𝑓(𝑥6)]/𝜎(𝑥), 𝑓(𝑥6) is the maximum value in existing dataset, Φ and 𝜙 

are the cumulative density and probability density function of standard normal distribution, 

respectively. 𝜁 is a hyperparameter in EI function, in this work a constant value 0.01 was used 

for 𝜁 . 𝑓(𝑥)  and 𝜎(𝑥)  are the predicted mean activity and uncertainty for a given IrTiO2 

structure as described in Equation (12).  

Since binary oxide structures are intractable to be completely enumerate, we conducted 

Monte Carlo simulation to find the configurations with the highest EI values at various Ir ratio 

and oxygen vacancy locations. Totally 8 oxide structures were chosen in each iteration (7 

structures with equal-ratio from 12.5% to 87.5%, and 1 structure with the highest EI), the	ΔG# −
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ΔG#%	of these searched structures were calculated by DFT calculation and added to the training 

database to refine the machine learning surrogate model.  

Materials. 

Tetrabutyl orthotitanate (≥99%) and isopropanol were purchased from Aladdin. 

Chloroiridic acid (H2IrCl6, 35% Ir) was purchased from Macklin. Perchloric acid (HClO4, 70%) 

was purchased from Sigma-Aldrich. Ethanol and hydrochloric acid (HCl) were purchased from 

Beijing Tong Guang fine chemical company. Commercial IrO2 was purchased from Henan 

Bauhinia Chemical Technology Co., Ltd. Carbon cloth (WOS 1011) was purchased from 

Taiwan CeTech Co., Ltd and further treated with nitric acid (HNO3). Carbon paper (TGP-H-

060) was purchased from TORAY. 

Synthesis of TiO2 nanorod array. The TiO2 nanorod array supported on carbon cloth was 

firstly prepared by a seed-assisted hydrothermal process (28). Typically, a  piece of carbon cloth 

(1×1 cm2) was soaked in isopropanol containing 75 mM titanium butoxide for 3 min. The 

precursor was dried at 60 ℃ and then annealed at 400 ℃ with heating rate of 2 ℃/min for 2 h 

in air to form a thin layer of TiO2 seeds. The carbon cloth with TiO2 seeds was transferred in 

Teflon-lined stainless-steel autoclave and immersed in a solution containing 5 mL 6 M HCl and 

100 μL titanium butoxide. Subsequently, the autoclave was heated at 150 ℃ for 8 h. After that, 

the hydrothermally treated carbon cloth was calcined at 400 ℃ with heating rate of 10 ℃/min 

for 2 h in air.  

 

Synthesis of TiO2-x nanorod array. The TiO2 nanorod array was annealed at 700 ℃ for 4 h in 

H2/Ar flowing gas to prepare the defective TiO2 (named as TiO2-x) nanorod array. Although 

surface vacancies are preferentially generated during H2 treatment, their instability under 

oxidative conditions suggests that only subsurface or near-surface vacancies remain active 

during OER. This supports the relevance of our computational model, which emphasizes the 

role of stable subsurface oxygen vacancies in enhancing catalytic activity. 

 

Synthesis of Ir single atoms on TiO2-x nanorod (IrTiO2-x). The IrTiO2-x catalyst was 

synthesized by an impregnation-thermal decomposition process. In detail, the piece of carbon 

cloth loaded with TiO2-x nanorod array was immersed in 0.5 mg/mL H2IrCl6 solution for 4 h. 

the IrTiO2-x was obtained by calcining the precursor sample at 300 ℃ with heating rate of 

5 ℃/min for 2 h under argon atmosphere.  
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Synthesis of Ir single atoms on TiO2 nanorod (IrTiO2). The IrTiO2 catalyst was prepared by 

the same method with IrTiO2-x, except that using TiO2 nanorod array instead of TiO2-x.  

 

Characterizations.  

Field emission scanning electron m icroscope (FE-SEM) was collected on a HITACHI 

SU-8010 microscope. High-resolution transmission electron microscopy (HRTEM) was 

performed on a JEOL JEM-2100F microscope operated at 200 kV. High-angle annular dark 

field-scanning transmission electron microscopy (HADDF-STEM) images of the catalysts were 

obtained on Thermo Scientific Themis Z microscope working at 300 kV. Powder X-ray 

diffraction (XRD) patterns were performed on a PANalytical X’Pert PRO diffractometer with 

Cu-Kα radiation (λ=1.5418 Å, 40 kV, 40 mA). X-ray photoelectron spectroscopy (XPS) was 

collected on Thermo Scientific K-Alpha, and all data were corrected with C 1s peak at 284.6 

eV. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was carried out by 

using Agilent 5110. Electron paramagnetic resonance (EPR) measurements were run on a 

Bruker EMX PLUS spectrometer. The X-ray absorption spectroscopy (XAS) data were 

collected at the 1W1B station in Beijing Synchrotron Radiation Facility (BSRF), the X-ray 

absorption nearedge spectroscopy (XANES) and at Ir L3-edge of catalysts were obtained with 

fluorescence mode. The XAS data at Ir L3-edge were calibrated to Ir foil, and IrO2 was used as 

reference materials. The data analysis was performed using Artemis and Athena in the Demeter 

software suite by FEFF software.  

 

Electrochemical measurements.  

The OER performance of the catalysts was studied on a CHI 760E workstation with a 

standard three-electrode cell. The carbon cloth substrate supported with IrTiO2-x nanorod array 

was used as a working electrode. An Ag/AgCl electrode (saturated KCl) and platinum plate (1 

×  1 cm) were served as the reference electrode and counter electrode, respectively. All 

measurements were performed in 0.1 M HClO4 electrolyte at room temperature. All potentials 

in this work were converted into the reversible hydrogen electrode (RHE) by the equation of E 

(vs. RHE) = E (vs. Ag/AgCl) + 0.27 V.  

The linear sweep voltammetry (LSV) was recorded in the potential range of 1–2 V vs. RHE 

with a scan rate of 5 mV�s-1 after being calibrated with iR compensation. The electrochemical 

impedance spectroscopy (EIS) was conducted at an overpotential of 0.3 V from 0.1 to 105 Hz. 

The load amount of commercial IrO2 and 20% Ir/C on the carbon paper are 30 μgIr.cm-2 and 15 

μgIr.cm-2. The mass activity (MA) of catalysts was obtained by the equation of jgeo/mIr, where 
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jgeo is the geometric current density (mA·cm-2), mIr is the loading of Ir on the carbon cloth 

(μgIr·cm-2), which is obtained from ICP-OES results. The electrochemically active surface area 

(ECSA) was estimated by electrochemical double-layer capacitance (Cdl) according to the 

equation of Cdl/Cs, where Cdl was tested in the non-Faradic potential of 1.1–1.2 V vs. RHE with 

a scan rate from 10 to 50 mV·s-1. The Cs is the specific capacitance and the value is chosen as 

35 μF·cm-2 to estimate the ECSA.  

 

Data and Materials Availability 
All other data needed to evaluate the conclusions in this paper are present in the paper and/or 

the Supplementary Materials. Additional datasets and trained machine learning models are 

available at Zenodo database: https://zenodo.org/records/15477808. 
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Fig. 1 | Workflow and bimetallic oxide combination screening. (A) Workflow of the 

Bayesian optimization accelerating the design of OER electrocatalyst. (B) DFT calculated 

heatmap of oxygen evolution reaction activity for various dopant-support combinations. The 

OER overpotential is represented by the color-coding double ring, with red indicating low 

overpotential and blue indicating high overpotential. The inner circles denote the overpotential 

when dopant atoms act as reaction sites, while the outer rings indicate the overpotential for 

metal sites in the oxide serving as reaction sites. (C) Free energy profiles of oxygen evolution 

reaction on Ti site in pure TiO2 (orange) and Ir doped TiO2 (green). (D) Free energy profiles of 

oxygen evolution reaction on Ir site in pure IrO2 (orange) and Ir doped TiO2 (green).  
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Fig. 2 | Bayesian optimization of IrTiO2. (A) Parity plot of the machine learning model 

predicting ΔG# − ΔG#% for IrTiO2. (B) Parity plot of the machine learning model predicting 

formation energy for IrTiO2. The reported mean absolute error of the surrogate model (in 

eV/atom) is normalized to the total number of atoms in the slab, including all elements. The 

train-to-test set ratio is 8:2, and the reported mean absolute error (MAE) is the average of 10 

random cross-validation runs. (C) Machine learning predicted mass activity (relative to IrO2) 

at 1.53V as a function of Ir loading for the most active and the most stable IrTiO2 configuration. 

(D) The most active IrTiO2 oxide configuration at Ir surface ratio of 18.75%. (E) The most 

stable IrTiO2 oxide configuration at Ir surface ratio of 18.75%. 
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Fig. 3 | Effect of oxygen vacancies on the OER activity of IrTiO2. (A) Frequency distribution 

histogram of ΔG# − ΔG#%  on Ti sites without and with oxygen vacancies. (B) Frequency 

distribution histogram of ΔG# − ΔG#%  on Ir sites without and with oxygen vacancies. The 
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vertical dashed lines in blue and red respectively depict the ΔG# − ΔG#% values of pure TiO2 

and pure IrO2. (C) Machine learning predicted mass activity at 1.53V relative to IrO2 of IrTiO2 

and IrTiO2-x as a function of Ir loading. (D) Charge density differences calculations of O 

adsorbed on Ti site in pure TiO2, IrTiO2 and IrTiO2-x, yellow signifies charge accumulation and 

cyan indicates charge depletion. (E) Charge density differences calculations of O adsorbed on 

Ir site in pure IrO2, IrTiO2 and IrTiO2-x (F) DFT calculated projected density of states (PDOS) 

of TiO2, IrTiO2, and IrTiO2-x and IrO2.  The 2p states of O atoms, 3d states of Ti atoms and 5d 

states of Ir atoms in the surface are colored by red, green and orange, respectively. The energies 

are all referenced to the vacuum level, and the Fermi level for each system was denoted by the 

vertical black dashed line.  
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Fig. 4 | Characterization and electrocatalytic OER performance of catalysts. (A) HAADF-

STEM images of IrTiO2-x. (B) EPR spectra of IrTiO2 and IrTiO2-x. (C) Ir L3-edge XANES 

spectra of IrTiO2-x, commercial IrO2, and Ir foil. (D) Fourier-transforms of k3-weight Ir L3-edge 

EXAFS spectra for IrTiO2-x, commercial IrO2, and Ir foil. (E) LSV curves of TiO2, IrTiO2, 

IrTiO2-x, commercial IrO2 and 20% Ir/C. (F) Overpotential of IrTiO2, and IrTiO2-x, commercial 

IrO2, and 20% Ir/C at 10 mA·cm-2. (G) Mass activity of IrTiO2, and IrTiO2-x, commercial IrO2, 

and 20% Ir/C at 1.53 V vs. RHE. (H) Tafel slopes derived from (E). (I) EIS plots of IrTiO2, and 

IrTiO2-x, commercial IrO2, and 20% Ir/C. 

 

 
 
 
 


