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Abstract

PtCo intermetallic alloy nanoparticles are highly active and stable catalysts for

the oxygen reduction reaction (ORR), making them key materials for proton-exchange

membrane fuel cells. However, the high-temperature annealing required for ordering

into intermetallics phase often leads to particle growth. In this work, we developed

machine learning interatomic potential to model the disorder-to-order transition in

PtCo-based ternary alloys with high accuracy and computational efficiency. Monte

Carlo simulations reveal that introducing third elements significantly affects both the

ordering process and the critical temperature for the disorder-to-order transition. The

ordering thermodynamic driving forces of various PtCoM alloys were systematically

investigated to identify potential high-performance PtCoM catalysts. Kinetic analysis
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further indicates that the accelerated ordering transition in PtCo alloys is primarily

driven by lower migration energy barriers and enhanced directional diffusion. These

findings provide valuable atomic-scale insights into the chemical ordering mechanisms

and suggest a pathway for designing highly ordered PtCo-based nanoparticles for en-

ergy conversion and storage applications.

Introduction

Proton-exchange membrane fuel cells (PEMFCs) are promising clean energy technologies

with significant potential in transportation and power generation applications.1–5 However,

the sluggish kinetics of the oxygen reduction reaction (ORR) at the cathode significantly

limit their efficiency, necessitating the use of platinum (Pt)-based catalysts for optimal per-

formance.6–8 The high cost and scarcity of Pt remain key barriers to the large-scale adoption

of PEMFCs.4 Alloy catalysts, which combine Pt with other metals such as Fe, Co, and Ni,

present a feasible solution by enhancing catalytic activity through electronic and ligand ef-

fects while reducing Pt content.9–13 This approach is crucial for achieving high performance

at a lower cost, which is essential for the broader commercialization of PEMFCs.

Intermetallic alloys refer to crystalline structures in which the constituent elements are ar-

ranged in an ordered and uniform manner. It is widely reported in the literature that ordered

intermetallic compounds exhibit superior activity and stability compared to their disordered

counterparts.14–17 The enhanced activity and stability of intermetallic compounds are at-

tributed to stronger electronic interactions between Pt and the doped metals, greater com-

pressive strain, and lower formation enthalpy.15,18 Although ordered intermetallic compounds

are thermodynamically more stable, the synthesis of multicomponent metallic nanocrystals

through wet-chemical methods often results in disordered solid-solution alloys or phase sep-

aration due to the varying reduction potentials of the constituent metals.19 Therefore, an-

nealing at elevated temperatures is commonly employed to facilitate the disorder-to-order

transition. However, this process frequently causes catalyst sintering, leading to particle
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growth and a consequent reduction in the atomic utilization of noble metals.20,21

Several strategies have been explored to mitigate the particle sintering during the disorder-

to-order transition, including enhancing the interaction between nanoparticles and the sup-

port through sulfur atoms,15 forming protective shells around the particles using molecular

additives,22,23 and elaborately controlling the heating and cooling rates.24 Additionally, in-

troducing a third element, such as Ga, Cu, or Ni, into bimetallic alloys has proven effective

in promoting the ordered transition of the alloy.25–28 Previous studies have primarily focused

on representative ordered and disordered structures, identifying trends through key indica-

tors such as formation enthalpy and migration energy barriers derived from first-principles

calculations.24,26,29 The use of empirical potentials and global optimization algorithms has

further expanded the scope of investigations, offering alternative approaches to studying the

transition process.30–33 Despite these advancements, microscopic insights into the processes

governing disorder-to-order transitions and the chemical ordering of ternary alloys remain

limited. These challenges are further complicated by the wide range of alloy configurations

and the substantial computational resources needed to achieve statistically significant results

with first-principles accuracy.

Recent advances in machine learning potential have introduced a novel approach for

modeling interatomic interactions that combines the precision of first-principles calculations

with the computational efficiency of empirical potentials.34,35 In this work, we developed a

machine learning interatomic potential using transfer learning, based on the pretained large

atomic model.36 This machine learning potential enables efficient Monte Carlo simulations

of the PtCoM disorder-to-order transition process with first-principles accuracy, providing

atomic-scale insights into ordering process. Our work not only advances the understanding

of the mechanisms driving chemical ordering but also provides a scalable framework for in-

vestigating other alloy systems, facilitating the rational design and optimization of advanced

materials.
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Figure 1: Development and accuracy of machine learning interatomic potential. (a)
Schematic of the workflow for developing the machine learning potential for PtCoM. (b)
Convergence curve of the fine-tuning process.(c) Comparison of accuracy for different ma-
chine learning potential models: ’Pure DPA1’ refers to the DPA1 model whose parameters
are not adjusted; ’From scratch’ refers to training a new model with randomly initialized
parameters, without inheriting any from the pre-trained DPA1 model; ’Finetuned’ refers to
training a new model that inherits its initial parameters from the pre-trained DPA1 model.
(d) Energy error and (e) force error of the fine-tuned machine learning potential on the
validation test.

The machine learning potential were trained through fine-tuning the Deep Potential

model with a gated attention mechanism (DPA-1), as llustrated in Fig 1a.36 The dataset

for fine tuning includes alloy structures (PtCo and PtCoM) with various degrees of chemical
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ordering (Figure S1-S3, Table S1). The final dataset contains a total of 36,331 frames from

the optimization calculations, which were divided into a training set and a validation set

in a 9:1 ratio. The convergence process of the model’s accuracy is shown in Fig 1b. A

total of 5 million training steps were performed. After these steps, the errors for both the

training and validation sets became nearly identical, indicating that no overfitting occurred.

Additionally, the model’s accuracy plateaued, suggesting that 5 million training steps were

sufficient. We evaluated different training strategies using the same training data and same

number of steps but different parameter fine-tuning schemes. The results demonstrate that

directly applying the pre-trained DPA-1 model without any modification leads to substantial

prediction errors (Fig 1c). In contrast, fine-tuning all parameters of DPA-1 yields the highest

accuracy, outperforming models trained from scratch (Fig S4). This performance gain can

be attributed not only to the prior knowledge encoded in the pre-trained model, but also to

the prior knowledge encoded in the pre-trained model, which offers a superior initialization

for parameter optimization. This performance gain can be attributed to the prior knowl-

edge encoded in the pre-trained model, which provides a better initialization and facilitates

more efficient parameter optimization compared to training from scratch. These findings

underscore the efficiency and effectiveness of the pre-training and fine-tuning paradigm in

developing accurate machine learning potentials.

Through pre-training and fine-tuning, a machine learning potential was developed, achiev-

ing an energy error of 0.0022 eV/atom and a force error of 0.04 eV/Å (Fig 1d-e). We are

confident that the model is sufficiently accurate to replace first-principles calculations, as its

energy error surpasses those reported in existing literature for machine learning models ap-

plied to alloy systems.37–40 Additionally, its force error is comparable to the force convergence

criterion of 0.03 eV/Å commonly used in DFT structural optimizations. We also performed

additional benchmarking against several representative interatomic modeling approaches for

PtCoM ternary alloys. Specifically, we compared the energy prediction accuracy of the fine-

tuned DPA-1 model with that of a fine-tuned MACE model, as well as more traditional
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approaches including cluster expansion and descriptor-based regression using Gaussian Pro-

cess Regression. As summarized in Table S2, the fine-tuned DPA-1 model achieves a lower

energy MAE (0.0022 eV/atom) compared to the MACE model (0.0029 eV/atom), and out-

performs both the cluster expansion (0.0035–0.0082 eV/atom) and the descriptor-based GPR

model (0.0036–0.0058 eV/atom), which were trained on representative PtCoCu and PtCoNi

subsets. These results highlight the accuracy and transferability of the fine-tuned DPA-1

model across a broader compositional space and support its use in our study.

Thermodynamics of disorder-to-order transition of PtCoM

Using the machine learning potential, we conducted virtual experiments via Monte Carlo

simulations to investigate the disorder-to-order transition process of PtCoM at different tem-

perature. To evaluate the temperature dependence, we adopted a simplified thermodynamic

model, considering the high computational cost of rigorous phase space sampling methods.

Specifically, the free energy change ∆G was approximated as ∆G = ∆H− T∆Sconfig, where

the enthalpy change ∆H was assumed to be temperature-independent, and the entropy con-

tribution was limited to the configurational entropy ∆Sconfig. This approximation neglects

vibrational and electronic entropy contributions, which are computationally demanding to

compute via first-principles methods. Although more accurate evaluations could be achieved

using molecular dynamics or metadynamics, these techniques remain impractical for high-

throughput alloy screening due to their substantial resource requirements. Despite these sim-

plifications, our approach captures the dominant thermodynamic driving forces and aligns

with widely adopted methodologies in prior studies,24,41 offering a reasonable approximation

for analyzing disorder-to-order transition trends in PtCoM systems. The enthalpy was cal-

culated using the trained machine learning potentials, and the configurational entropy was

determined based on chemical ordering using the method proposed by Yang.42 The initial

atomic occupations in PtCoM were randomly assigned, after that Monte Carlo simulations

were performed to iteratively swap the positions of two atoms, allowing the system to evolve
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Figure 2: Thermodynamic insights into the disorder-to-order transition of PtCoM. (a) The
3D distribution of αPt−CoCu and αCo−Cu of PtCoCu at the begining and after 400 steps, 800
steps, and 1200 steps in Monte Carlo simulation at 600K. (b) The final chemical ordering
αPt−CoM of PtCo, PtCoNi, PtCoCu and PtCoZn as a function of simulated temperature in
Monte Carlo simulation. A critical temperature that separates the map into two distinct
regimes: fully ordered regime and not fully ordered regime. (c) The final chemical ordering
αPt−CoM of PtCoCr, PtCoMn and PtCoFe as a function of simulated temperature in Monte
Carlo simulations. (d) Schematic diagram of the relationship between Gibbs free energy
change ∆G, enthalpy change ∆H, and temperature T during the disorder-to-order transition.

toward the configuration with the lowest free energy. The Warren-Cowley short-range order

(SRO) was used to quantify the ordering degree, which is defined as:

αA−B = 1− PA|B

CB

(1)

where CB is the concentration of element B, and PA|B is the probability of finding ele-

ment B in the neighbor of element A. A negative αA-B value indicates an ordered atomic

arrangement, while a positive αA−B value reflects the segregation of A and B. For our bulk
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model, the minimum and maximum values of αPt-CoM are -1/3 and 2/3, corresponding to

the complete ordering of Pt with Co/M and the complete aggregation of Pt with Co/M,

respectively. Notably, the maximum value αPt-CoM of 2/3 is due to the limited size of the

supercells, which prevents it from reaching 1.

We monitored the evolution of chemical orderings during the disorder-to-order transi-

tion process of Pt2CoCu in 600K (Fig 2a). Initially, Pt and non-Pt atoms, as well as Co

and Cu atoms, are randomly distributed. As the simulation progresses, Pt and non-Pt

atoms arrange in an increasingly ordered manner, while Co and Cu atoms tend to seg-

regate. This phenomenon can be attributed to the differing interactions between various

atomic pairs. Notably, this behavior provides insights into multi-component intermetallic

compounds, where certain element pairs still exhibit direct disorder despite the overall trend

towards ordering. Machine-learning-assisted Monte Carlo simulations provide atomic-level

insights into the chemical ordering. Since local short-range order is particularly challeng-

ing to observe directly in experiments—especially for elements like Co and Cu, which have

similar physicochemical properties.43

Monte Carlo simulations were also performed at various temperatures for different Pt2CoM,

and the degree of ordering corresponding to the configuration with the lowest free energy

is shown in Fig 2b-c. These simulations indicate that for PtCo, Pt2CoNi, Pt2CoCu and

Pt2CoZn, there is a critical transition temperature. Below this temperature, complete or-

dering is attainable for Pt and Co/M (αPt-CoM = −1/3), but above it, such ordering is

not feasible (αPt-CoM > −1/3). This critical temperature, which aligns with findings from

other studies, is influenced by two primary factors.30,31,44 Firstly, at elevated temperatures,

the increased randomness in the Monte Carlo simulation trajectories hampers the conver-

gence to the global minimum energy state. Secondly, based on the free energy relation

∆G = ∆H − T∆Sconfig, the enthalpy change ∆H during the ordering process is assumed to

be temperature-independent. The configurational entropy change ∆Sconfig is negative dur-

ing the disorder-to-order transition, as disordered states have higher entropy than ordered
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ones. Consequently, the entropic term −T∆Sconfig is positive and increases with temperature,

which raises the free energy ∆G and destabilizes the ordered phase at higher temperatures.

For Pt2CoCr, Pt2CoMn and Pt2CoFe, complete ordering is not achieved at any temperature.

As shown in Fig 2d, theoretically, a higher critical transition temperature T′
tran is generally

associated with a larger thermodynamic driving force for ordering–namely, a more negative

enthalpy change ∆H, which facilitates the disorder-to-order transition. The enhanced order-

ing observed upon the addition of Ni, Cu, and Zn can thus be attributed to their ability to

increase this thermodynamic driving force relative to PtCo. In contrast, the incorporation

of Cr, Mn, and Fe reduces the driving force, thereby suppressing the ordering tendency.

Element screening

In addition to the six elements discussed above, we conducted a systematic investigation on

the effects of various other elements on the ordering process of PtCo, covering most transition

metals from the fourth, fifth, and sixth periods. Lanthanide elements and technetium (Tc)

were not included in this study. Tc is extremely scarce in the Earth’s crust, and accurately

modeling it using DFT presents significant challenges.45 In addition, Sc, Y, Zr, and Hf

were also excluded, as DFT optimizations for the corresponding Pt2CoM structures failed

to converge. Additionally, a general trend between the critical transition temperature and

the thermodynamic driving force ordering suggests that Eordering can serve as a qualitative

indicator for screening alloying elements. A higher Eordering than that of PtCo indicates that

incorporation of element M thermodynamically promotes ordering between Pt and Co/M.

Even in cases where a well-defined transition temperature is absent-such as for Cr, Mn,

and Fe-the ordering energy remains a meaningful measure of chemical ordering tendencies.

This Eordering based screening approach enables us to efficiently identify promising alloying

elements without relying on time-consuming Monte Carlo simulations.

180 structures with Pt and Co/M arranged in a random pattern (αPt-CoM = 0) were gen-

erated. Simultaneously, 180 structures with Pt and Co/M arranged in an ordered pattern
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Figure 3: Element screening in Pt2CoM systems. (a) Schematic diagram of disorder-to-order
driving energy Eordering for Pt2CoM and PtCo. (b) Comparative energy analysis of ordered
(αPt-CoM = −1/3) and randomly arranged (αPt-CoM = 0) Pt and Co/M atom configurations,
with energy values benchmarked to PtCo. (c) Disorder-to-order driving energy Eordering for
Pt2CoNi. (d) Disorder-to-order driving energy Eordering for Pt2CoV.

(αPt-CoM = −1/3), featuring varying degrees of ordering between Co and M (αCo-M ranging

from -3/27 to 25/27), were also created. Their energies were calculated and compared to

that of PtCo. We tested the effect of sampling size on the results, as shown in Table S3, and

found that increasing the number of sampled structures beyond 180 has a negligible impact

on the calculated energies. As shown in Fig 3a, compared to the ordered Pt-Co structure,

which has a single energy value, the energies of the ordered Pt-CoM structures exhibit a
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broader distribution due to the varying ordering degree of Co-M. This spread provides ad-

ditional thermodynamic driving force that promotes the disorder-to-order transition. As

shown in Figure 3a, for the binary PtCo alloy, the ordering energy Eordering is defined as the

energy difference between the ordered structure with αPt-Co = −1/3 and the average energy

of randomly generated configurations with αPt-Co = 0. For the ternary Pt2CoM alloy, the

concept is extended due to the presence of a third element. The total ordering energy can

be expressed as Etotal = Eordering +Eextra, where the first term accounts for the energy differ-

ence between the average energy of randomly generated Pt-Co/M disordered configurations

(αPt-CoM = 0) and the average energy of randomly generated Pt-Co/M ordered structures

(αPt-CoM = −1/3). The second term represents the additional stabilization associated with

Co–M interactions, which is calculated as the energy difference between the average energy

of Pt/CoM ordered structures with Co/M ordering or disordering and the average energy of

the ordered structures (αPt-CoM = −1/3).

We first systemtally investigated the case where Pt is ordered with Co/M, examining

how the chemical ordering of Co and M affects the energy of PtCoM (Fig S5-S6). As

shown in Fig S5, for certain elements such as Ti, V, and Nb, the energy increases linearly

with increasing αCo-M, indicating a thermodynamic preference for these elements to adopt

an ordered arrangement with Co. In contrast, for elements such as Ni, Cu, and Zn, the

energy decreases linearly with increasing αCo-M, suggesting a tendency toward phase sepa-

ration from Co. For a few elements, such as Ru and Re, no significant linear correlation

is observed between energy and αCo-M. Fig S6 summarizes the additional thermodynamic

driving force arising from either ordering (Fig S6b) or segregation (Fig S6c) between Co

and M. In Fig S6b, elements highlighted in red exhibit lower energy when ordered with Co

compared to the average energy across different Co–M orderings, indicating a preference for

ordering. Conversely, in Fig S6c, red-highlighted elements show lower energy in a segregated

configuration, suggesting a tendency to phase-separate from Co. Overall, early transition

metals with fewer d-electrons tend to order with Co, while late transition metals with more
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d-electrons tend to segregate. This behavior can be attributed to the relative bond strengths

among Co–Co, M–M, and Co–M. Specifically, if the sum of the Co–Co and M–M bond en-

ergies (ECo−Co+EM−M) is smaller than twice the Co–M bond energies (2ECo−M), an ordered

arrangement is energetically favored. Otherwise, Co and M tend to segregate (Fig S7).

Fig 3b presents the total ordering energy of Pt2CoM relative to PtCo. Elements high-

lighted in red indicate an enhancement in the thermodynamic driving force for ordering, while

those in blue suggest a reduction. Among the investigated elements, doping with Ti, V, Cr,

Ni, Cu, Zn, Nb, Ag, Cd, Ta, Au, and Hg was found to increase the thermodynamic driving

force for ordering between Pt and non-Pt components, suggesting their potential as favorable

alloying elements. Notably, ordered phases incorporating Ti, V, Ni, Cu, Zn, Ag, and Au have

already been experimentally synthesized, as summarized in Table S4. For example, Liao et

al. synthesized PtCoTi ternary nanoparticles (∼3 nm) consisting of a Pt3Co0.6Ti0.4 inter-

metallic core and three atomic layers of Pt shells using a modified impregnation-reduction

approach. This catalyst exhibits superior activity and durability compared with Pt3Co and

Pt in rotating disk electrode (RDE) and single fuel cell tests.46 Zhong et al. demonstrated

the synthesis of highly ordered PtCoV nanoalloys via oxidative–reductive thermochemical

treatments. At elevated temperatures, enhanced atomic-scale chemical ordering and reduced

interatomic distances significantly improve ORR activity, achieving up to 1 A/mg of Pt in

RDE measurements.47 Shen et al. reported the synthesis of highly ordered PtCoZn nanopar-

ticles (∼5.3 nm) through a controlled two-stage confinement strategy that enables both small

particle size and high atomic ordering by resolving the conflict between atomic migration

and spatial confinement. The resulting intermetallic PtCoZn catalyst exhibits exceptional

ORR performance and durability in PEMFCs, attributed to enhanced Pt–Co coupling, high

Pt surface exposure, and agglomeration prevention within mesoporous carbon walls.48

Considering that the average energy difference between the ordered and random phases

of Pt2CoM relative to PtCo ranges from -0.11 to 0.03 eV/atom (Table S5), the ordering

or segregation of Co and M provides additional thermodynamic driving force, leading to a
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maximum energy decrease of 0.12 eV/atom for the ordered phase (Table S6). This highlights

the critical role of Co–M chemical ordering in facilitating the disorder-to-order transition of

Pt and non-Pt elements. As illustrated in Figures 3b and 3c, Co–Ni segregation contributes a

thermodynamic driving force of 0.0046 eV/atom in Pt2CoNi, while Co–V ordering contributes

a notably higher value of 0.0377 eV/atom in Pt2CoV.

Kinetics of disorder-to-order transition of PtCoCu
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The previous section investigated chemical ordering in thermodynamic equilibrium using

Monte Carlo simulations based on atomic exchanges. However, atomic exchanges are pri-

marily a computational tool for identifying stable configurations and do not directly reflect

physical atomic migration mechanisms. In reality, atomic movement occurs via vacancy-

mediated diffusion, and the presence of vacancies plays a key role in facilitating the ordering

process.49 To enhance the accuracy of migration barrier predictions, we fine-tuned the ma-

chine learning potential by incorporating a small dataset of transition-state configurations

obtained from climbing-image nudged elastic band (CI-NEB) calculations of vacancy migra-

tion in PtCo. As shown in Fig 4a, the fine-tuned model achieves a prediction error of just

0.07 eV for the vacancy migration energy barrier in PtCo.

In FCC crystals, each atom has 12 nearest neighbors, giving rise to 12 possible vacancy

migration pathways (Fig 4b). By combining the finetuned machine learning potentials with

the CI-NEB method, we calculated 5,000 migration energy barriers for Pt, Co, and Cu

atoms migrating to neighboring vacancies in Pt2CoCu and PtCo alloys, thereby investigating

the kinetics of the ordering process. As shown in Fig 4c, Cu atoms exhibit, on average,

lower migration energy barriers compared to Pt and Co atoms in Pt2CoCu, suggesting that

the incorporation of Cu can accelerate the disorder-to-order transition. Furthermore, the

average migration barriers of Pt and Co atoms in Pt2CoCu (Pt: 1.07 eV, Co: 1.02 eV) are

notably reduced compared to those in PtCo (Pt: 1.33 eV, Co: 1.17 eV), indicating that the

presence of Cu not only enhances the mobility of Cu atoms themselves but also facilitates the

diffusion of Pt and Co atoms, further promoting the ordering kinetics. To assess whether

this kinetic promotion effect extends to other dopants, we performed additional vacancy-

mediated diffusion barrier calculations for Pt2CoNi and Pt2CoZn. The results show that Ni

and Zn also exhibit lower migration barriers than Pt and Co, with mean values of 0.97 eV

for Ni and 0.68 eV for Zn, respectively. Importantly, the presence of these dopants similarly

reduces the barriers for Pt and Co diffusion (Pt2CoNi: Pt/Co = 1.06/1.06 eV; Pt2CoZn:

Pt/Co = 0.95/1.01 eV), indicating that the barrier-lowering effect is not unique to Cu but
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may be generalized to other dopants (Table S7).

The probability of vacancy migration along each path is given by:

pi =
exp (−Ei/kBT )∑12
i=1 exp (−Ei/kBT )

(2)

where Ei is the migration energy barrier for path i, kB is the Boltzmann constant, and T is

the temperature. To characterize the distribution of these migration probabilities, we define

the parameter R:

R = 1− σ(p)/max(σ(p)) (3)

where σ(p) denotes the standard deviation of the probability vector p. At low tempera-

tures, migration is dominated by the path with the lowest energy barrier, resulting in pi = 1,

pj ̸=i = 0 and R → 0. In contrast, at high temperatures, the migration probabilities be-

come uniform (pi = pj = 1/12), leading to R → 1 (Fig 4d). To quantitatively compare

the migration behaviors in PtCo and PtCoCu alloys, we adopted the diffusion multiplicity

metric proposed by Cao,50 which is defined as the variance of R. Fig 4e shows the diffusion

multiplicity of PtCo and PtCoCu as a function of temperature. It can be observed that

the diffusion multiplicity first increases and then decreases with temperature, exhibiting a

critical temperature at which Var(R) reaches its maximum value. In the low-temperature

directional migration region, PtCoCu shows a lower Var(R) than PtCo, indicating that the

introduction of Cu enhances directional migration in this temperature range. In the high-

temperature random migration region, PtCoCu exhibits a higher Var(R) value than PtCo,

suggesting that Cu reduces random migration at high temperatures. Moreover, the position

of the peak of Var(R) for PtCoCu shifts to the right compared to PtCo, indicating stronger

directional migration. Additionally, the intensity of the peak increases, revealing higher

diffusion heterogeneity. These observations collectively suggest that the introduction of Cu

accelerates the ordering kinetics.
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Conclusions

In conclusion, by fine-tuning a pretrained large atomic model, we developed a machine learn-

ing potential model that accurately predicts the energy of PtCoM ternary alloys with various

chemical orderings. This model serves as a powerful tool for uncovering thermodynamic and

kinetic insights into the disorder-to-order transition in PtCoM alloys. Rather than building

separate machine learning models for each PtCoM composition, as commonly done in earlier

work, we employ a transferable, fine-tuned machine learning potential capable of handling a

broad range of elements across the periodic table. This enhanced generality enables efficient

screening not only of the 16 elements considered in previous studies but also of most transi-

tion metals in the 3rd, 4th, and 5th periods, thereby substantially expanding the discovery

space for new alloy candidates.

Thermodynamically, we find that introducing third elements such as Ni, Cu, and Zn in-

creases both the thermodynamic driving force and the critical transition temperature for the

disorder-to-order transformation compared to binary PtCo. Our screening results identify

several promising PtCoM alloy candidates—PtCoTi, PtCoV, PtCoNi, PtCoCu, PtCoZn,

PtCoNb, PtCoAg, PtCoCd, PtCoTa, PtCoAu, and PtCoHg—that exhibit a stronger ther-

modynamic driving force for ordering than PtCo. These findings highlight the important role

of chemical ordering between the third element M and Co in enhancing the overall ordering

tendency of PtCoM alloys.

Kinetically, migration barrier calculations reveal that Cu not only possesses a lower

migration energy barrier than Pt and Co but also facilitates the migration of neighboring

atoms. This enhanced atomic mobility promotes structural rearrangement and accelerates

the ordering process during annealing. These insights not only deepen our understanding

of the underlying atomic mechanisms but also provide valuable guidance for the design of

high-performance, cost-effective multicomponent catalysts for energy conversion and storage

applications.
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