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A distributed replica dynamics (DRD) method is proposed to calculate rare-event molecular dy-
namics using distributed computational resources. Similar to Voter’s parallel replica dynamics (PRD)
method, the dynamics of independent replicas of the system are calculated on different computational
clients. In DRD, each replica runs molecular dynamics from an initial state for a fixed simulation
time and then reports information about the trajectory back to the server. A simulation clock on
the server accumulates the simulation time of each replica until one reports a transition to a new
state. Subsequent calculations are initiated from within this new state and the process is repeated
to follow the state-to-state evolution of the system. DRD is designed to work with asynchronous
and distributed computing resources in which the clients may not be able to communicate with
each other. Additionally, clients can be added or removed from the simulation at any point in the
calculation. Even with heterogeneous computing clients, we prove that the DRD method reproduces
the correct probability distribution of escape times. We also show this correspondence numerically;
molecular dynamics simulations of Al(100) adatom diffusion using PRD and DRD give consistent
exponential distributions of escape times. Finally, we discuss guidelines for choosing the optimal
number of replicas and replica trajectory length for the DRD method. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4934987]

I. INTRODUCTION

One of the most significant challenges for molecular dy-
namics (MD) simulations is to overcome the time scale gap
between vibrational motion and the rare events of interest
for chemical and material properties. One of the pioneers of
this field is Voter who has developed accelerated molecular
dynamics methods including parallel replica dynamics (PRD),
hyperdynamics (HD), and temperature accelerated dynamics
(TAD).1–5 In the most relevant method to the work here, PRD,
a set of replica trajectories are started within the same initial
state. These trajectories are thermalized using independent
streams of random numbers so that they become decorrelated
and statistically independent of each other. The trajectories
are then run until one detects a transition to an adjacent state.
At this point, the transition is reported and all trajectories are
stopped. The total simulation time is advanced by the sum of
the simulation times accumulated on the replicas. The replicas
are then started in the product state of the replica for which a
transition was detected.

The PRD method is well adapted to parallel architectures,
for example, using a message passing interface. It is nontrivial,
however, to use PRD within a distributed computing environ-
ment (DCE) due to the difficulty of ensuring that the replicas
simultaneously stop and then restart their trajectories in a new
state when a transition is detected. In a typical client-server
DCE, communication is initiated from the clients to the server
but not from the server to the clients or between clients. This
makes it difficult to rapidly propagate the information of a tran-
sition from a single client to the entire network. Additionally,
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one cannot rely on clients reporting back to the server in a
DCE so that algorithms must be fault-tolerant with respect to
clients dropping out of the network. In this paper, we propose
a modification to the PRD algorithm, which we call distributed
replica dynamics (DRD) that is deigned to work in a DCE.
Similar to the PRD method, the configuration of a system
is replicated on multiple clients and then decorrelated with
independent MD trajectories. As with PRD, the clients run MD
until a transition is detected. The difference with DRD is that
the detection of a transition from a single client is not able
to stop the trajectories on other clients. Instead, each client
runs for a fixed trajectory length and reports back to the server
when the assigned simulation task is done. As we will show,
this allows the server to accumulate simulation time as clients
report their results without introducing errors in the calcula-
tion. Our scheme has no requirement for synchronization or
direct communication between replicas and is thus well suited
for DCEs.

II. METHOD

Following the work of Voter,1 we consider a classic,
canonical system consisting of N atoms evolving on a 3N-
dimensional potential energy surface. The escape from a reac-
tant state, when the escape is a rare event, is a first-order
process. In other words, the probability of a successful crossing
from the initial state per unit time is constant and defined as the
rate constant k,

p(t) = k exp (−kt). (1)

The procedure of the DRD method is as follows.
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Step 1: The current configuration of the system is repli-
cated and sent to M independent clients in the DCE.

Step 2: On each client, independent initial momenta are
randomly generated according to the Maxwell-Boltzmann
distribution at the desired simulation temperature. Then, a
short dephasing trajectory is run for ∆tdph to decorrelate the
replicated trajectories from each other. During this ∆tdph all
transition attempts are rejected by reflecting the trajectory
back into the initial state. Lelièvre and coworkers showed that
this dephasing step is crucial for preparation of the quasi-
stationary distribution, which gives rise to the exponential
distribution of escape times.7 Formally, it would be more
accurate to restart the trajectory in the reactant state and
attempt to run the dephasing time again entirely within the
initial state. We choose, however, to reflect rather than restart
the trajectory because a restart loop will not necessarily fin-
ish in a fixed amount of computational time, especially in
problematic cases where the escape time is faster than the
dephasing time. Our algorithm requires that a fixed amount of
work be done by each client before reporting the results to the
server.

Step 3: An MD trajectory of fixed length, trep, is inte-
grated on each replica. A check to see if the trajectory has
made a transition to a new state is performed every ∆tblk. In
our implementation, this is done by minimizing the configu-
ration of the trajectory to see if the resulting minimum has
changed from that of the initial state. If a transition is de-
tected on a client, an additional MD correlation time, ∆tcor, is
performed to capture any correlated events that might result
from the transition. Otherwise, the MD trajectory on this client
runs until the total time, trep, is reached. Information about
whether a transition is found, the transition time, and the new
state configuration is transmitted by the client back to the
server.

Step 4: On the server side, data returned from the clients
are registered and processed in chronological order. As illus-
trated in Fig. 1, the simulation clock is accumulated by trep
for each replica in which no transition is found. When the
first transition is reported, the simulation time is incremented
by the transition time of the reporting replica for which a
transition was detected, ttns. The product configuration from
this transition is then taken as the new global state in which
new trajectories are initiated.

When a transition is detected, steps 1-4 are repeated from
within the new state.

FIG. 1. Flow chart showing how the simulation clock is accumulated on the
server in the DRD method.

A. Proof that DRD is correct

To prove the validity of the DRD method, we show that the
moment generating function (MGF) of the DRD escape time
t ′ is the same as t in Eq. (1) for a rare event with rate constant
k. The MGF of a random valuable X is defined as

MX(m) = E
�
emX

�
, m ∈ R, (2)

where E[. . .] is the expectation value. The MGF of the expo-
nentially distributed waiting time t is

Mt(m) =
 ∞

0
emtke−kt dt =

k
k − m

. (3)

In DRD, the waiting time t ′ is generated by accumulating
Nf reports of trajectories of fixed length trep, followed by one
in which a transition was detected at time ttns,

t ′ = Nftrep + ttns. (4)

The MGF of t ′ is

Mt′ (m) =
 ∞

0
emt′p(t ′) dt ′, (5)

where p(t ′) is the probability density of waiting times t ′. It is
non-trivial to write p(t ′) explicitly, but it can be written as a
mixed joint probability density of the discrete random variable,
Nf, and the continuous random variable ttns,

p(t ′) = Pf(trep)Nfp(ttns), (6)

where Pf(trep) is the probability that a trajectory does not find
a transition in the time trep,

Pf(trep) = 1 −
 trep

0
ke−kt dt = e−ktrep, (7)

and p(ttns) is the probability density of finding a transition at
ttns (from Eq. (1)) on the interval [0, trep),

p(ttns) = ke−kttns for ttns ∈ [0, trep). (8)

Since Nf and trep are independent variables, the moments of t ′

are

Mt′(m) =
 ∞

0
emt′p(t ′)dt ′

=

∞
Nf=0

 trep

0
em(Nftrep+ttns)Pf(trep)Nfke−kttnsdttns

=

∞
Nf=0

em(N f trep)Pf(trep)N f

 trep

0
ke(m−k)ttnsdttns

=
k

m − k
[e(m−k)trep − 1]

∞
Nf=0

[emtrepPf(trep)]Nf

=
k

m − k
[e(m−k)trep − 1] 1

1 − emtrepe−ktrep

=
k

k − m
. (9)

Given that the MGF of the DRD transition time probability
distribution is the same as the exponential distribution, the
uniqueness theorem states that the two probability distributions
are also the same.8
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FIG. 2. Probability distribution function of escape times calculated by DRD
(red) and PRD (green). The blue line is the exponential distribution from
which random numbers were generated, with a rate constant k = 1.0.

III. RESULTS

A. Numerical simulation of escape times

Figure 2 shows results from numerical simulations of the
probability distribution of the escape time using DRD and
PRD. For each replica, instead of running MD of a real physics
system, we generated random numbers ti from an exponential
distribution with rate constant k = 1/⟨Tesp⟩ chosen to be 1.0. A
distribution of transition times collected according to the DRD
and PRD method is compared with the exponential distribu-
tion. In the DRD simulation, random numbers {ti} were gener-
ated sequentially until the first transition was detected within
a specified simulation time trep = 0.1 (the first ti ≤ trep). For
each replica, the simulation clock accumulated min{ti, trep}. In
PRD, Nrep = 20 random numbers were generated; the minima
of these Nrep transition times, multiplied by Nrep, was recorded
as the escape time. As shown in Fig. 2, the DRD and PRD
calculations (red and green solid lines, respectively) are consis-
tent with the exact exponential distribution (blue dashed line).

B. Adatom hopping on Al(100)

Using the DRD method, we simulated the diffusion of
an adatom on the Al(100) surface at T = 225 K. The Al
interatomic interactions were described by an embedded-atom
potential from Voter and Chen.9 The system was modeled as
six atomic layers containing a 10 × 10 lattice, with the bottom
two layers frozen. The Langevin-Verlet algorithm was used
to integrate the dynamics of the system with a time step of
1.0 fs and a Langevin friction of 0.01 fs−1. Our simulation
was distributed to 150 clients using the E software10 and the
BOINC6 DCE. Each DRD trajectory ran for 100 ps and then
reported back to server. ∆tdph and ∆tcor were set to 1 ps. Each
trajectory was thermalized to 225 K using an MD trajectory
of duration ∆tdph, during which any transitions were rejected.
Every ∆tblk of 2.0 ps, a state check was performed to see
whether the system entered in a new state. The transition
detection was done by minimizing to see if the resulting point
was the initial state minimum. When a transition was detected,
the configuration at time ttns was passed back to the server
(when the client task was completed).

To establish the validity of the DRD method, we ran a
PRD simulation on the same system with 50 replicas using

FIG. 3. Probability distribution of transition times for adatom hopping on
Al(100). The red line shows the distribution from DRD while the green line
is from the PRD method. The inset shows a top view of our model for Al(100)
surface, with the adatom highlighted in green.

the same MD settings as the DRD simulation. A total of 500
events were collected using both DRD and PRD. The proba-
bility distributions of escape times are shown in Fig. 3. DRD
produces the same exponential distribution of escape time
and average escape time as PRD (⟨TDRD

esp ⟩ = 2.07 ± 0.09 ns,
⟨TPRD

esp ⟩ = 2.19 ± 0.09 ns), to within the statistical uncertainty.

C. Efficiency of DRD

The efficiency of DRD is somewhat dependent on the way
in which client jobs are assigned by the server. In the strategy
that we used, the server distributes jobs to the clients in bundles
of Nrep. If no transition is found in this set of jobs, another set
of Nrep jobs is then distributed until the first transition event is
reported. This simple strategy is not necessarily optimal, but it
allows us to determine a qualitative relationship between the
computational efficiency and the choice of Nrep. In order to
simplify the discussion, we scale the time unit by the average
transition time, ⟨Tesp⟩. In other words, we set k = 1 so that
⟨Tesp⟩ = 1.

The computational overhead of DRD is defined as the
average number of force calls required to see a single transition
⟨Nfcs⟩ as compared to the PRD algorithm. The efficiency of
DRD is then expressed as

E f =
⟨Tesp⟩
⟨Nfcs⟩ =

1
⟨Nfcs⟩ . (10)

Assuming that Nbnl blocks of Nrep replicas have been sent out
before the first transition has been detected,

⟨Nfcs⟩ = (trep + ∆tdph)⟨Nbnl⟩Nrep (11)

and

Nbnl =




1 0 < t < trep

· · ·
i (i − 1)Nreptrep < t < iNreptrep

. (12)

The expectation value of Nbnl is

⟨Nbnl⟩ =
∞
i=1

iPi, (13)

where Pi is the probability of a transition in the ith bundle
of replicas, meaning that (i − 1)Nreptrep < t < iNreptrep. Setting
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FIG. 4. Efficiency contour as a function of Nrep and trep described by Eq. (17)
with ∆tdph � 10−6 s. The dashed line is for Nreptrep= 1.

u = Nreptrep gives

Pi = [e−u]i−1[1 − e−u] (14)

and

⟨Nbnl⟩ =
∞
i=1

i(e−u)i−1(1 − e−u) (15)

= (eu − 1)
∞
i=1

ie−ui =
1

1 − e−u
. (16)

Substituting ⟨Nbnl⟩ into Eq. (10), and setting v = Nrep∆tdph,
gives the efficiency

E f =
1 − e−u

u + v
. (17)

We expect DRD to be effective for transitions on a time
scale of µs or longer, and for systems which dephase in a time
of∆tdph of∼ps. Given these parameters, i.e.,∆tdph � 10−6⟨Tesp⟩,

Fig. 4 shows the efficiency of DRD as a function of Nrep and
trep. For a fixed trep, the efficiency drops with increasing Nrep.
However, as long as Nreptrep < 1, an efficiency over 75% can
be achieved. For instance, to simulate a µs event, with ∆tdph
= 1 ps, ∆trep = 100 ps and Nrep = 1000 yield a computational
efficiency near 80%.

IV. CONCLUSION

In conclusion, we show that DRD is a robust method for
accelerating MD simulations in a DCE in a way that is consis-
tent with Voter’s PRD. We also show that a high efficiency
can be achieved with an appropriate choice of the number of
replicas and the MD time that each replica simulates.
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