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An effective way to accelerate rare events in molecular dynamics simulations is to apply a bias
potential which destabilizes minima without biasing the transitions between stable states. This
approach, called hyperdynamics, is limited by our ability to construct general bias potentials without
having to understand the reaction mechanisms available to the system, a priori. Current bias poten-
tials are typically constructed in terms of a metric which quantifies the distance that a trajectory
deviates from the reactant state minimum. Such metrics include detection of negative curvatures
of the potential, an energy increase, or deviations in bond lengths from the minimum. When one
of these properties exceeds a critical value, the bias potentials are constructed to approach zero.
A problem common to each of these schemes is that their effectiveness decreases rapidly with system
size. We attribute this problem to a diminishing volume defined by the metrics around a reactant
minimum as compared to the total volume of the reactant state basin. In this work, we mitigate the
dimensionality scaling problem by constructing bias potentials that are based upon the distance to
the boundary of the reactant basin. This distance is quantified in two ways: (i) by following the
minimum mode direction to the reactant boundary and (ii) by training a machine learning algorithm
to give an analytic expression for the boundary to which the distance can be calculated. Both of these
ridge-based bias potentials are demonstrated to scale qualitatively better with dimensionality than
the existing methods. We attribute this improvement to a greater filling fraction of the reactant state
using the ridge-based bias potentials as compared to the standard potentials. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4937393]

I. INTRODUCTION

Molecular dynamics (MD) is a ubiquitous tool used to
capture the dynamic evolution of molecular systems. MD
simulations use a finite difference approximation to integrate
Newton’s equations of motion with a time step on the order of
femtoseconds. One of the main limitations of MD simulations
is their inability to simulate molecular processes at time scales
longer than ∼1 ns due to the prohibitively large computational
resources required. These slower events (often called “rare
events”) are important in many fields and include surface
diffusion processes, surface catalysis, and grain boundary
migration.

One successful method for accelerating MD simulations is
Voter’s hyperdynamics (HD) approach.1 In HD, the potential
energy surface of a chemical system is altered by adding
a non-negative bias potential, ∆V (r).2,3 Voter’s derivation
of HD shows that the reaction rate, calculated using the
transition state theory (TST) approximation, is preserved
when the bias potential goes to zero on the TST dividing
surface, and the time evolution of a trajectory is accelerated
according to

thyper =

n
i=1

∆t e∆V (r (ti))/kBT . (1)

a)P. Xiao and J. Duncan contributed equally to this work. P. X. implemented
the HD-MMF method and J. D. implemented the HD-SVM method.

b)Electronic mail: henkelman@utexas.edu

Here, kB is the Boltzmann’s constant, T is the temperature,
r(ti) is the 3N dimensional vector describing the position of
the molecular system at time step i, N is the number of atoms,
∆t is the integration time step on the biased potential, n is
the number of time steps, and thyper is the time elapsed on
the original PES. Then, the evolution of the trajectory on the
biased potential maintains the correct state-to-state kinetics as
the original PES with a computational acceleration or “boost”
factor,

boost =

e∆V (r (ti))/kBT


h
=

thyper

n∆t
, (2)

where the subscript h indicates an average over the trajectory
on the biased hyper-potential.

One of the most challenging aspects of the HD approach
is the construction of an effective bias potential that does
not rely upon prior knowledge of the reaction mechanisms
available to the chemical or materials system. Having a general
bias potential that does not rely on a preconceived notion of
how the system will react is important because it allows
the HD method to reveal unexpected reaction mechanisms.
An effective bias potential should also reduce barriers in the
reactant state and go to zero at the reactant state boundary.

An important point that should be considered when
constructing a bias potential is that it should not impede
sampling of the reactant state. Poor sampling can result from
regions of the bias potential that are not thermally accessible
within the time scale of reactions on the hyper-potential. This
consideration provides a conservative maximum bias set by
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the lowest barrier to escape the reactant state. A large average
boost factor cannot then be achieved by small regions of large
boost; rather, a modest boost should be accumulated over as
much of the reactant state as possible. The challenge lies in
the fact that it is not easy to identify the dividing surface,
which defines the boundary of the reactant state, in the high
dimension systems of interest.

Several bias potentials have been suggested for the
hyperdynamics method.1–10 One of the primary limitations
of current bias potentials is how their effectiveness scales
with the dimensionality of the system. More specifically, most
bias potentials give a large boost factor in low dimensional
systems that falls off rapidly as the number of atoms in
the system is increased. A point that we make in this
paper is that these bias potentials are defined as being
non-zero within some descriptor of the reactant minimum.
If one thinks of this biased region as being similar to
a hypersphere inside a larger hypercube, representing the
true boundary of the reactant state, then the volume of the
hypersphere drops rapidly with respect to the hypercube as
the dimensionality increases. This argument motivates the
construction of a bias potential that is made to go to zero near
the boundary of the reactant state rather than be non-zero near
the reactant minimum. The closer that the bias potential can
be constructed as filling the reactant, the better the HD boost
will scale with dimensionality. This argument is illustrated
in Fig. 1.

Voter’s original bias potential boosts the concave region
near a minimum and regions where the dot product of the
force and the min-mode direction is non-zero. The latter
defines relatively narrow valleys connecting the minimum to
saddle points. In a high dimensional space, however, the dot
product between any pair of random vectors drops to zero and
thus this bias leaves large areas between the concave region
and the boundary of the reactant basin unbiased.

Another popular bias potential is the “bond-boost”
method introduced by Miron and Fichthorn.5 The bond-boost
bias potential is based on how much the maximally stretched
bond deviates from the equilibrium bond length. The method
requires the user to select at what value the bias potential goes
to zero, namely, the stretching threshold q. An appropriate
value of q should be less than the maximum stretch of all

FIG. 1. A cartoon illustrating why minimum-based bias potentials can suffer
from dimensionality scaling limitations more than ridge-based bias potentials.
A reduction in the coverage of the reactant state becomes a severe problem as
the dimensionality increases, in the same way that the ratio of a hypersphere
to hypercube decreases rapidly with dimensionality.

bonds at the transition states. The concept of boosting bonds
can be related to the idea of boosting the concave region of
the potential. Instead of using the min-mode direction as in
Voter’s bias, it uses the softest single bond stretching mode
and instead of turning off the bias at inflection points, it uses an
empirical value of the strain, which should ideally correspond
to that of the true ridge. The advantage of the bond boost
approach is that it naturally separates variables by using the
maximum-stretched bond length. It is the summation over all
degrees of freedom in the dot product operation of Voter’s bias
that leads to its poor dimensionality scaling. A drawback of
the bond-boost bias is that it is turned off based upon a distance
from the reactant minimum. In a high dimensional system,
this boosted region becomes small even when the threshold, q,
is set to that of the saddle points, where the bonds break. We
should note that Voter and coworkers have recently developed
a strategy to localize the bond-boost potential which improves
the scaling for systems that are larger than considered in this
work.11

A third kind of bias potential is the flat potential bias
introduced by Steiner et al.4,12 The flat bias turns off when
the potential energy is above a specified level (typically up to
the lowest saddle point) and sets the overall hyper-potential
to the flat level otherwise. The flat bias can be thought of
as a simplified version of the bond boost bias potential.
If the total potential is approximated as a summation over
pair-wise harmonic potentials along the bonds, then the bond
boost potential shuts off when a maximum pair potential
is reached whereas the flat potentials uses the sum over
all the bonds. The flat-bias method does not scale as well
as the bond boost because it couples together all degrees
of freedom for determination of the bias, which reduces
the volume of the boosted hypersphere with respect to
the reactant basin with increasing dimension. Advantages
of the flat bias are that it has no additional computational
cost over regular MD and that it requires minimal effort to
implement.

In this work, we present two bias potentials, both of which
use the distance to the boundary of the reactant state (the
ridge) in their construction. We show that this definition leads
to an average boost factor that scales significantly better with
dimensionality than the methods described above. The first
ridge-based bias potential is determined on the fly by following
the minimum curvature mode direction up to the ridge. In the
second potential, the distance to the ridge is approximated with
a support vector machine (SVM) algorithm trained with data
from a high temperature MD trajectory. Both ridge-based bias
potentials are turned off when the hyper-trajectory approaches
the ridge.

II. DEFINITION OF THE RIDGE-BASED
BIAS POTENTIALS

A. Ridge-based bias potential using minimum-mode
following (MMF)

To determine the ridge-based bias potential using a MMF
approach, a walker climbs up the potential energy surface V (r)
along the min-mode direction τ̂ until it escapes the reactant
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basin. The MMF bias potential ∆V MMF
b

(r) is then defined
as the energy difference between the escape point r‡ on the
boundary of the reactant basin and the starting point of the
walker, r , up to a maximum value of ∆V max

b
,

∆V MMF
b (r) =




V (r‡(r)) − V (r) if V (r‡(r)) − V (r) < ∆V max
b

∆V max
b if V (r‡(r)) − V (r) ≥ ∆V max

b .

(3)

Far from the ridge, the bias is the constant maximum
value, ∆V max

b
; near the ridge, where V (r‡(r)) − V (r) < ∆V max

b
,

the hyper-potential, V MMF
h

(r) ≡ V (r) + ∆V MMF
b

(r), is equal
to the energy of the escape point, V (r‡(r)). Since the
energy of the min-mode walker increases monotonically,
having a maximum bias limits the climbing distance. If
the climber energy increases larger than ∆V max

b
, the climb

is terminated and the maximum bias is applied. Using a short
climbing distance not only lowers the computational cost for
determining the bias but also avoids discontinuities of the
bias where two or more ridges merge. Of course, the benefits
of a small climbing distance need to be balanced with the
goal of having a large maximum bias potential and boost
factor.

In the fully boosted region, where ∆V MMF
b

(r) = ∆V max
b

,
the bias potential is constant and the hyper-force is the same as
the force on the unbiased potential. Outside the fully boosted
region, near the ridge, the hyper-force is determined by the
corresponding escape position on the potential ridge, r‡(r),
as calculated by the MMF climber. In fact, all points along
the climb trajectory share the same escape point and therefore
the same hyper-force. Thus, the component of the hyper-force
along the climb trajectory, i.e., the minimum-mode direction,
is zero,

∇V MMF
h (r) =




∇V (r‡)Jr‡(r) if V (r‡(r)) − V (r) < ∆V max
b

∇V (r) if V (r‡(r)) − V (r) ≥ ∆V max
b .

(4)

The hyper-force perpendicular to the climbing path
is related to the perpendicular force at the escape point
r‡(r). Specifically, the perpendicular force should be rotated
according to the change in direction of the minimum-mode
direction along the climbing path and scaled in magnitude
according to the change in a volume element or Jacobian
along the climbing path, Jr‡(r). When the maximum bias is
small enough, the V (r‡(r)) − V (r) < ∆V max

b
region is near the

ridge and Jr‡(r) in Eq. (4) can be approximated by a rotation
matrix which aligns τ(r‡) with τ(r) and thus makes ∇V MMF

h
(r)

perpendicular to τ(r). In practice, we find that Jr‡(r) can
be approximated as the identity matrix with little effect on
the accuracy of calculated escape rates. In this way, the
hyper-force is simply ∇V (r‡) as calculated by the min-mode
walker.

A schematic picture of our ridge-based MMF bias
potential strategy is shown in Fig. 2. A trajectory spends most
of its time in the maximally boosted region. Once it escapes to
the flat region where V (r‡(r)) − V (r) < ∆V max

b
, it is unlikely to

return to the reactant state. This bias is different from Voter’s
original bias potential which uses a force projection along the
min-mode direction. The ridge-based bias potential is zero at

FIG. 2. Illustration of the ridge-based bias potential.

the true ridge, while Voter’s goes to zero at a local definition of
the ridge, where the dot product of the force and the negative
mode is zero. Importantly, the local ridge can be qualitatively
different from the true ridge.13 Moreover, our ridge-based
bias flattens the potential energy surface, does not introduce
any new barriers, and thus facilitates efficiently sampling in
the reactant region. Most importantly, the ridge-based bias
potential scales well with dimensionality, as we will show
subsequently.

To minimize the cost of calculating the MMF bias
potential, several computational tricks are employed.

1. If a trajectory is in the maximal bias region, ∆Vb is
calculated only every five MD steps to check if it equals
∆V max

b
; for the other steps, we take ∆Vb = ∆V max

b
and

Fhyper = ∇V (r) without incurring any extra computational
cost.

2. When the previous check shows ∆Vb = ∆V max
b

, the
numerical setting for the next ∆Vb check can be very
liberal. We increase the step size for min-mode climbing to
0.4 Å (from 0.1 Å) and the min-mode rotational tolerance to
3◦ (from 1◦).

3. In concave regions, where there is no negative curvature
mode, we take ∆Vb = ∆V max

b
without performing any min-

mode climbing.
4. Only when the condition that∆Vb < ∆V max

b
is detected,∆Vb

is updated at every step using tight convergence settings,
where the climbing step size is 0.1 Å and the dimer rotation
tolerance is 1◦.

One problem with the MMF method is that it may not
detect a ridge in a part of the potential where there are
two negative modes. At low temperature, when rare events
occur near first-order saddle points, this is not a significant
concern. At high temperature, however, trajectories may leave
the reactant basin where there is at least one negative mode
parallel to the ridge as well as the one across it. If a parallel
mode has the most negative curvature, the MMF walker will
climb parallel to the ridge and not detect it. To test for and to
correct this problem, we propose that MMF walkers can be
used to follow all of the negative modes. The bias potential
will then be the minimum of that from each walker. In the
following example, we found only a 10% increase in the rate at
the highest temperature considered (600 K in the Al/Al(100)
system) when all negative modes were followed and so all
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results are based upon following just the lowest curvature
mode.

A second issue related to the accuracy of the MMF
method is that the flat region introduced by the bias potential
at the ridge will increase recrossing effects and decrease the
Kramers transmission coefficient. In a recent paper by Huang,
Perez, and Voter,14 where an efficient bias potential based on
predefined minimum energy paths is defined, it is shown that a
buffer of unbiased potential near the ridge can be introduced to
recover the recrossing effects of MD on the original potential.
The same strategy can be applied here by making a minor
change to the bias potential,

∆V MMF
b (r) = max{∆V MMF

b (r) − ∆V safe
b ,0} (5)

if ∆V MMF
b (r) = 0 then ∇V MMF

h (r) = ∇V (r), (6)

where ∆V safe
b

is the height of the “safety” zone at the
ridge which allows for proper recrossing effects. The
following examples are implemented with ∆V safe

b
= 0 since

such dynamical corrections were not found to be important in
our test cases.

B. Ridge-based bias potential using machine learning

The second way that we construct a ridge-based bias
potential is by first characterizing the boundary of the reactant
state prior to running hyperdynamics. We do this by training
a machine learning algorithm to classify structures that
are known to belong to the reactant state. An appropriate
tool for this classification problem is the one-class support
vector machine (OCSVM).15,16 The OCSVM requires a set
of data points from a distribution of a single class that
describes the given distribution, i.e., from the reactant state.
The algorithm produces a decision function, f (r), which
is positive within the reactant state and negative outside.
In this way, the OCSVM finds a hypersurface where the
decision function is equal to zero. The training set for the
OCSVM is generated using high temperature MD that is

constrained to the reactant state. During the MD trajectory,
the system is periodically minimized to detect if the system
escapes the reactant state. If the system is found to escape the
reactant state, points belonging to product states are discarded
and the trajectory is restarted within the reactant state.
Details of the OCSVM can be found in the supplementary
material.17

In the language of machine learning, we use the Gaussian
radial basis function kernel to describe the distance between
points in feature space,

K(xi, x j) = e
− |xi−x j |2

2γ2 , (7)

where γ controls the width of the Gaussian basis functions.
The appropriate choice of γ is non-trivial, and in general,
parameter selection plays an important role in the capability
of the OCSVM to model complex distributions. Small values
of γ lead to over-fitting and many small Gaussian functions
around the training points. Large values of γ lead to an over-
generalization of the distribution which can fail to capture
the details of the class boundary. Some guidelines for the
selection of γ are described later.

One challenge that we faced when generating a SVM
bias potential is that while the OCSVM algorithm is designed
to classify points in the reactant state, it does not provide
information as to how close the point is to the boundary
of the reactant state. Typically, OCSVM decision functions
have maximum (absolute) values within a distance γ of the
class boundary and small values well inside or outside of
the reactant state. The non-monotonic nature of f (r) makes
it unsuitable to use directly as a bias potential. Instead, we
use a different metric: the distance to the closest point on the
OCSVM boundary, rsurf(r),

d(r) = |rsurf(r) − r |. (8)

Given a boundary generated from the OCSVM, the bias
potential ∆V SVM

b
(r) is defined by

∆V SVM
b (r) =




∆V max
b

(
d(r)2
2w2 −

d(r)3
3w3

)
if d(r) < w and f (r) > 0

∆V max
b if d(r) ≥ w and f (r) > 0

0 if f (r) ≤ 0

, (9)

where w is a cutoff distance for the constant region of the bias potential, as described previously for the MMF bias potential.
The gradient of the SVM potential is

∇V SVM
h (r) =




∇V (r) + ∆V max
b

(
d(r)
w2 −

d(r)2
w3

)
d̂(r) if d(r) < w and f (r) > 0

∇V (r) if d(r) ≥ w and f (r) > 0
∇V (r) if f (r) ≤ 0

, (10)

where d̂(r) is a unit vector connecting r and rsurf(r). Figure 3
provides a schematic of how the SVM bias potential is
constructed.

For the HD-SVM algorithm, we need to know the closest
distance between r and the class boundary. The algorithm
for doing this is illustrated in Fig. 4 with additional details
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FIG. 3. Illustration of how the SVM bias potential is constructed.

provided in the supplementary material.17 Briefly, we first
find the nearest support vector and use ∇ f with Newton’s
method to find a collinear point between r and the support
vector which lies on the f = 0 surface. Second, we again
use ∇ f to minimize the distance to r while remaining on
the f = 0 surface. These two steps are repeated iteratively
until the closest point on the boundary is found to be within
a specified tolerance. The resulting distance from r to the
boundary, d(r), is used to determine the bias potential from
Eq. (9).

In Sec. III, we first show how the ridge-based bias
potentials are constructed for a two dimensional system and
demonstrate their accuracy for rate calculations. Second,
we compare the dimensionality scaling of the HD boost
factor of our ridge-based bias potentials in comparison with
the existing bias potentials mentioned in the Introduction.
Finally, we calculate the overall computational speed-up of
running accelerated MD, including the cost associated with
the ridge-based bias potentials, and show that the net gains
are significant.

FIG. 4. (a) A method to find the closest point on the class boundary (red
line). Given an initial point, r , the closest support vector (green star) is found.
Newton’s method, based upon the gradient of the decision function, ∇ f , is
used to determine the collinear point on the decision surface. (b) Newton’s
method is also used to move perpendicular to the hypersurface to find the
closest point to r on the class boundary.

III. RESULTS FOR A TWO-DIMENSIONAL POTENTIAL

Our first simple test is for the “Voter97” two dimensional
potential of the form2

V (x, y) = cos(2πx)(1 + 4y) + 1
2
(2πy)2. (11)

The potential is harmonic in the y-direction and periodic in the
x-direction. Each local minimum has two saddle points leading
to symmetric minima towards−x and+x with identical energy
barriers of 2.0.

A. Minimum-mode following bias potential

The hyper-potential produced by min-mode following is
plotted in Fig. 5 together with the original potential. The
bias potential decreases the barrier and smooths the potential
within the minimum basin; no extra roughness is introduced
in the hyper-potential. Figure 6 shows that the rates to escape
the reactant basin at various temperatures are accurate as
compared to direct MD simulations. The average boost factor
⟨eβ∆Vb⟩ scales exponentially with 1/kBT . The slope in Fig. 6
is equal to ∆V max

b
= 1.0, which corresponds to the ideal case

(grey dashed line) in which the trajectories remain in the
fully boosted region before escaping the reactant state. These
results indicate that the MMF ridge-based bias potential is
doing well as can be expected for this model system.

B. Support vector machine bias potential

In order to train the OCSVM, a set of 3000 points was
generated by running a MD trajectory constrained to the
reactant state at kBT = 0.35. As mentioned previously, the
width of the OCSVM Gaussian kernel, γ, is required as an

FIG. 5. Illustration of the MMF ridge-based bias as applied to (a) the Voter97
potential. (b) The MMF bias potential and (c) the resulting hyper-potential
are shown by the color scale on top of the black contour lines of the original
potential. The maximum bias, ∆Vmax

b
, is set to be 1.0, which is half of the

barrier height.
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FIG. 6. (a) Comparison of the escape rate from the Voter97 potential mini-
mum calculated using MD and HD with the MMF and SVM ridge-based bias
potentials. (b) The average boost factor for the HD calculations; the ideal case
is indicated by the dashed grey line.

input to the training process. Figure 7 illustrates a challenge
associated with the selection of γ. When γ is too small, as
in Fig. 7(b), over-fitting leads to islands (where f < 0) in
the reactant state. When γ is too large, as in Fig. 7(d), the
OCSVM over-generalizes the data set and provides insufficient
resolution of the reactant state boundary. Figure 7(c) represents
a suitable choice of γ. To test the HD performance as a
function of γ, the maximum theoretical boost is determined
at the temperature for which the training set was generated.
For this test, we ran dynamics on the potential energy surface
and assigned a maximum boost of exp(∆V max

b
/kBT), where

∆V max
b
= 1.0 and kBT = 0.35 when the trajectory was inside

the f = 0 surface and zero otherwise. The results, in Fig. 7(a),

FIG. 7. (a) Plot showing how the maximum possible boost varies with the
width of the OCSVM kernel, γ. The class boundary at f = 0 for γ equal to (b)
0.4, (c) 0.7, and (d) 1.0.

show that this test is not able to distinguish between functions
f that over-fit, over-generalize, or optimally classify the data
set. However, this sort of test will be useful for finding how γ
should scale with dimensionality.

Figure 6(a) shows that the HD-SVM calculated rates
to escape the reactant basin are accurate as compared to
direct MD simulations over a wide range of temperatures.
Values of γ and w were set to 0.7 and 0.15, respectively.
The average boost factors, in Fig. 6(b), are somewhat lower
than the ideal case indicating that the SVM method is not
capturing the reactant state boundary quite as well as the MMF
method.

IV. EFFICIENCY SCALING ON A HIGHER
DIMENSIONAL POTENTIAL

We now show how the ridge-based bias potential methods
scale with dimensionality and compare them with other
approaches. Our test system is that of an Al adatom on
the Al(100) surface. The atomic interactions are described
by an embedded atom method potential.18 To construct a
low-dimensional version of this system, all atoms except the
adatom are fixed to generate a three dimensional potential
energy surface. The dimensionality is increased by relaxing
the first, second, and third nearest neighbor shells around the
adatom. These four relaxed shell structures, with 3, 15, 54,
and 102 degrees of freedom, are shown in Fig. 8. In the 102D
case, the two atom exchange reaction has the lowest diffusion
barrier of 0.32 eV and the hop mechanism has a barrier of
0.38 eV; the hop is favored when fewer degrees of freedom
are relaxed.

A. Parameter selection

Before comparing the efficiency of various HD bias
potentials, the issue of parameter selection for the OCSVM
needs to be addressed. This is a hard problem in high

FIG. 8. Al adatom systems with increasing numbers of degrees of freedom
based upon fixing atoms beyond a radius R from the adatom (dark blue).
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dimensional systems where the surface cannot be easily
visualized as in Fig. 7. Instead, we can first determine
how the Gaussian radius γ should scale with dimensionality.
Using the same methodology as in Fig. 7(a), we calculate
how the maximum possible boost factor varies for HD-SVM
trajectories calculated as a function of the Gaussian kernel
width. A fixed training set size of 20 000 points was generated
from a MD trajectory at 400 K; the HD-SVM calculation was
also done at 400 K using ∆V max

b
= 0.2. In Fig. 9(a), it is clear

that for small γ, the boost increases rapidly with γ, indicating
that the reactant region is over-fit around the training points,
as in Fig. 7(b). At large γ, on the other hand, where the
maximum boost saturates, we expect to be in the under-fitting
regime. The values of γ for which the boost first saturates
(open circles) are between the undesirable extremes. This
critical γ value that lies between the under- and over-fitting
regimes scales with the square-root of the dimensionality, as
shown in Fig. 9(b). This result is expected because it is how
the magnitude of a multi-dimensional vector, with equivalent
components in each dimension, increases with dimensionality.
From this result, we conclude that the optimal value of γ can
be determined for one system (numerically) and then scaled
according to the dimensionality of similar systems. Using the
same logic, values of w were also scaled with the square root
of the number of degrees of freedom.

The system for which the optimal HD-SVM parameters
were determined was the 102D Al adatom system. As was
seen in Fig. 7 for the 2D example, the critical value of γ may

FIG. 9. (a) The maximum possible boost for SVM-classified reactant states
as a function of the kernel width, γ. (b) The optimal kernel width squared
scales linearly with the number of dimensions.

not be optimal. With these results in mind, we choose a value
close to the critical value of γ as well as one twice as large.
In Fig. 10, the boost factors obtained with a hyper-potential
fit for these two values of γ are plotted as a function of
the number of OCSVM training points. The HD tests were
done at 350 K using the smallest value of w = 0.4 Å that
gave accurate escape rates. For both γ values, the boost
factor was found to drop with insufficient training data,
although the larger value of γ = 4.6 Å required fewer training
points to reach a saturated boost. In principle, there could
be more tuning of these parameters, particularly with respect
to determination of a maximum γ that is acceptable without
over-generalization. For the purposes of this study, however,
we were content with a SVM biased potential based upon
20 000 training points generated at 400 K, fit using a kernel
width of γ = 4.6 Å, and a switching distance w = 0.4 Å, where
these two distance parameters were scaled by the square root
of the number of degrees of freedom for the smaller systems
(Fig. 11).

B. Performance of the ridge-based bias potential

The key question being asked here is how the ridge-based
bias potentials scale with dimensionality as compared to other
bias potentials. For this test, we compare the MMF and SVM
potentials with Voter’s original bias potential, the bond boost
method, and the flat bias. For the bond-boost method, two
values of the bond-stretch threshold are compared to that of
q = 0.2 (BB-q0.2) and q = 0.3 (BB-q0.3). For the Al adatom
system, the saddle point for the lowest energy exchange
mechanism has a maximum bond stretch of 37% at the saddle
point, which indicates that the value of q = 0.2 is probably
safe and q = 0.3 is slightly aggressive. The maximum bias
for the potentials was set to 0.2 eV, except for the flat bias
which was set at 0.3 eV above the reactant minimum, just
below the lowest energy saddle. The average boost factors
were calculated by running sufficiently long HD trajectories
at 400 K in the reactant state. In the case of the Voter bias,
Monte Carlo sampling of the hyper-potential was used instead
of MD to avoid calculation of the hyper-force.

In the 3D case, the boost factors from all of the bias
potentials are on the order of 100. When the number of

FIG. 10. The boost factor produced for various training set sizes for two
values of γ.
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FIG. 11. Average boost factor for a set of different bias potentials calculated
as a function of the number of degrees of freedom in the system.

dimensions increases to 15, where only five atoms are free
to move, the non-ridge-based bias methods lose more than
50% of their boost factor. At 102 dimensions, which is
characteristic of a realistic system, their boost factors have
dropped by at least an order of magnitude. In contrast, the
ridge based methods largely maintain their boost factors as
the number of degrees of freedom increases.

The accuracy and performance of the ridge-based bias
potentials at various temperatures are summarized in Table I.
The net acceleration of each method is calculated as the
average boost divided by the average number of force
evaluations required per HD time step. Clearly the ridge-based
bias potentials are more expensive to compute as compared
to other bias potentials so that a sufficient boost factor is
required to make them more efficient than running MD.
The overall performance of the methods will be a function
of temperature both because the boost increases rapidly
with lowering temperature and because the ridge-based bias
potentials require less computational work to evaluate when
they are far from the ridge and the bias potentials are constant.
On this fully boosted region, only occasional checks are
required to see if the trajectory is approaching a ridge.

In the two ridge-based methods, the computational
overhead occurs at different points. In the HD-MMF method,
there is no initial overhead but there is extra work at each HD
step. At 400 K, the HD-MMF method requires an average

TABLE I. Rates (×10−6 fs−1), boost factors, and efficiency of the ridge-based
bias potentials as calculated on the Al adatom system with 102 degrees of
freedom.

Temperature (K) 600 500 400 300

TST rate 20(1) 5.1(7) 0.6(1) 0.03(1)

HD-MMF rate 16(1) 5(1) 0.59(7) 0.028(2)
Boost 45 99 325 2271
⟨Force calls/step⟩ 39 34 17 8
Acceleration 1.2 2.9 19 284

HD-SVM rate 17(2) 4.1(5) 0.55(7) 0.013(2)
Boost 1.7 4.7 47 1739

of 17 force evaluations per HD step with a boost factor of
325 resulting in an overall acceleration of 19. In the HD-SVM
method, the overhead is required initially to generate OCSVM
training points. Taking our choice of 20 000 training points,
each is minimized using approximately 100 force evaluations,
giving a fixed overhead of 2 × 106 force evaluations. For a
conservative estimation of the acceleration of the HD-SVM
method, we can assume that the bias potential will only be
used for a single escape of the reactant state. At 400 K, a
couple of million HD iterations are required to see a transition
so that the overhead is roughly a factor of two. With a boost
factor of 47, the overall acceleration is approximately 24. In
summary, both the HD-MMF and HD-SVM methods provide
accurate escape times for this test system with acceleration
factors of about 20 as compared to MD at 400 K. This is
twice the acceleration of the bond boost method using the
most aggressive bond stretch parameter of 0.3.

V. CONCLUSION

Two forms of ridge-based bias potentials are described:
one based upon a direct on-the-fly minimum-mode following
trajectory to the ridge, and the other based upon a distance
to a machine-learned boundary of the reactant state. Both
ridge-based bias potentials are found to scale better with
dimensionality than existing bias potentials. We attribute this
difference to the ridge-based definition of the reactant basin
as a distance to the boundary of the reactant state rather than
to its minimum.
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